• Title/Summary/Keyword: Melting properties

Search Result 1,096, Processing Time 0.042 seconds

A study on the characteristics of Pb free Sn-2%Ag-x%Bi solder alloys (Pb Free Sn-2%Ag-x%Bi계 Solder의 특성에 관한 연구)

  • 흥순국;박일경;강정윤
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • The purpose of this study is to investigate the characteristics of Pb-Free Sn-2%Ag-Bi solder alloys. The solder alloys used in this study is Sn-2%Ag-(3,5,7,9%) Bi It is examined that their properties such as melting range, wettability, microstructure, microhardness, and tensile property. The addition of Bi(3,5,7,9%) lowered the melting point of the solder and the melting range was 196~203$^{\circ}C$. The wettability of the solder as equal to that of Sn-37% Pb solder. The morphology of structure did not change largely by addition of Bi. But the structure of cellular dendrite of linear type displayed. The tensile strength of the solder was superior to that of Sn-37%Pb solder. But the elongation was inferior to that of Sn-37%Pb solder. The hardness of Sn-2%Ag solder was tow times and that of Sn-2%Ag-Bi solder was three times of that in Sn-37%Pb solder. But the effect of increment of Bi content did not change largely.

  • PDF

Changes in Physicochemical Properties of Rice Starch from Rice Stored at Different Conditions (저장조건에 따른 쌀전분의 이화학적 성질 변화)

  • Ko, Yong-Duck;Choi, Ok-Ja;Park, Seok-Kyu;Ha, Hee-Suk;Sung, Nack-Kie
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.306-312
    • /
    • 1995
  • In order to know properties in rice starch during storage of rice, rice starch from stored rice(stored at $5^{\circ}C$, R.H. 65% and $30^{\circ}C$, R.H. 85%, for 16 weeks) used in this experiment. Water binding capacity of rice starch increased for 8 weeks, and then it decreased. As the storage period took longer, swelling power and solubility, optical transmittance, blue value, total amylose content and soluble amylose content decreased. For the same periods, changes in rice starch from stored rice$(30^{\circ}C$, R.H. 85%) were made more than those in rice starch at $5^{\circ}C$, R.H. 65%. The granule shape of rice starch, irrespective of storage periods and conditions, didn't make a significant difference. The relative crystallinity of the rice starch by X-ray diffraction didn't distinctly changed till the second week. But, at the fourth week, that by X-ray diffraction significantly decreased, and then slightly decreased. As the storage period took longer, gelatinization temperature, melting temperature and melting enthalpy measured by DSC got higher, but gelatinization enthalpy got lower. For the same storage period, gelatinization temperature, melting temperature, gelatinization enthalpy and melting enthalpy of rice starch stored at $30^{\circ}C$, R.H. 85% made changes more than those of rice starch stored at $5^{\circ}C$, R.H. 65% did.

  • PDF

Polyvalent Nanoparticle-oligonudleotide conjugates: Synthesis, Properties, and Biodiagnostic/Therapeutic Applications

  • Lee, Jae-Seung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Polyvalent nanoparticle-DNA conjugates exhibit a variety of unique features such as programmable assembly and disassembly, sharp melting transitons, intense optical properties, high stability, enhanced binding properties, and easy fabrication of the surface nature by chemical and physical modification. The unique properties of nanoparticle-DNA conjugates enable one to build up a number of versatile assay schemes for the detection of various targets. In addition, nanoparticle-RNA conjugates also demonstrate great promise of therapeutic applications in the context of RNA interference when combined with polymeric materials. In this presentation, representative examples of each aspect of nanoparticle-oligonucleotide conjugates will be discussed.

  • PDF

Thermoelectric Properties of Skutterudite CoSb3 Prepared by Arc Melting (아크용해법으로 제조된 Skutterudite CoSb3의 열전특성)

  • Yu S.W.;Park J.B.;Cho K.W.;Jang K.W.;Ur S.C.;Lee J.I.;Kim I.H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.93-96
    • /
    • 2005
  • The arc melting was employed to prepare undoped $CoSb_3$ compounds and their thermoelectric properties were investigated. Specimen annealed at $400^{\circ}C$ for 24 hrs showed sound microstructure. However, considerable voids and cracks were found after annealing at above $500^{\circ}C$. It seems to be attributed to the phase dissociation and thermal expansion due to phase transitions during annealing and cooling. Single phase $\delta-CoSb_3$ was successfully obtained by annealing at $400^{\circ}C$ for 24 hrs. In the case of increasing annealing temperature, phase decompositions occurred. Undoped $CoSb_3$ showed p-type conduction and intrinsic semiconducting behavior at all temperatures examined. Thermoelectric properties were remarkably improved by annealing and they were closely related to phase transitions.

Preparation and Thermal Properties of Octadecane/xGnP Shape-Stabilized Phase Change Materials to Improve the Heat Storage Performance of Buildings (건축물 축열성능 향상을 위한 Octadecane/xGnP SSPCM 제조 및 열적성능 분석)

  • Kim, Sughwan;Jeong, Su-Gwang;Lee, Jeong-Hun;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.126-130
    • /
    • 2013
  • In this study, a shape-stabilized phase change material (SSPCM) was prepared by octadecane and exfoliated graphite nanoplate (xGnP) in a vacuum, to improve thermal storage performance. The octadecane as an organic phase change material (PCM) is very stable against phase separation of PCM, and has the proper temperature range for thermal comfort in the building; and the xGnP is a porous carbon nano-material. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR) were used to confirm the chemical and physical stability of the Ocatadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter (DSC), and Thermogravimetric analysis (TGA). The specific heat of Octadecane/xGnP SSPCM was $14.1J/g{\cdot}K$ at $31.3^{\circ}C$. The melting temperature ranges of melting and freezing were found to be $26{\sim}35^{\circ}C$ and $26{\sim}19^{\circ}C$, respectively. At this time, the latent heats of melting and freezing were 110.9 J/g and 104.5 J/g, respectively. The Octadecane was impregnated into xGnP by as much as about 56.0% of the Octadecane/xGnP SSPCM's mass fraction.

Thermomechanical Properties and Shape Memory Effect of Chemically Crosslinked EPDM (Nordel(R) IP) (화학적으로 가교된 EPDM (Nordel(R) IP)의 열적기계적 특성 및 형상기억거동)

  • Chang, Young-Wook;Han, Jung-Eun;Kang, Shin-Choon;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.217-223
    • /
    • 2007
  • Thermomechanical and shape memory properties of dicumyl peroxide(DCP) cured semicrystalline EPDM($Nordel^{(R)}$ IP) were investigated. From gel content analysis, it can be seen that Nordel can be crosslinked by small amount of DCP and the degree of crosslinking increased with the increase of DCP content. DSC analysis revealed that the melting temperature and degree of crystallinity of the crosslinked rubber decreased with the increase of DCP. Tensile test showed that tensile modulus increased and elongation at break of the rubber decreased with an increase in the degree of cross linking. The chemically crosslinked semi-crystalline EPDM exhibited excellent shape memory behavior, i.e. the sample was easily deformed to have an arbitrary secondary shape above its melting temperature and was fixed well in its deformed state when it is cooled, and then the fixed shape was recovered to its original shape very fast upon heating above its melting temperature.