• 제목/요약/키워드: Melting Heat Transfer

검색결과 157건 처리시간 0.029초

수평원관내 체적변화를 고려한 얼음의 용용시 전열특성에 관한 연구 (Melting of Ice Inside a Horizontal Cylinder under the Volume Change)

  • 조남철;김동춘;이채탈;임장순
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1266-1274
    • /
    • 2001
  • Heat transfer phenomena during melting process of the phase change material (ice) was studied by numerical analysis and experiments. In a horizontal ice storage tube, the natural convection caused an increase in melting rate. However, the reduction of the heating surface area caused a decrease in melting rate. Therefore, during the melting process of ice in a horizontal cylinder, the reduction of the heating surface area should be considered. Under the same heating wall and initial water temperature condition, the melting rate became higher for $V_s/V_tot/=0.545 \;than \;that\; for\; V_s/V_tot$/=1.00 due to the difference in the reduction of heating surface area. A modified melting model considering the equivalent thermal conductivity of liquid phase and volume reduction was proposed. The results of the model were compared with the measured values and found to be in good agreement.

  • PDF

폐기물 열분해과정에서 발생된 합성가스의 연소 특성 (Combustion Characteristics of Synthesis Gas Generated in Waste Pyrolysis Process)

  • 안용수;황상순;이성호;이협희
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.143-150
    • /
    • 2003
  • The synthesis gas generated in waste pyrolysis melting process which consists of pyrolysis of waste and melting process of ash is known to be an alternative fuel. Since the compositopn of synthesis gas is much different from other synthesis gases, the fundamental combustion characteristics are analyzed in this study. The radiation heat heat flux is used to estimate the heat flux from flames made by many combinations of fuel and oxidant supply. The results show that the synthesis gas needs much more amount of oxidant for equivalent heat flux to methane flame and the inverse diffusion flame type for synthesis gas burner is suitable for better radiation heat transfer.

  • PDF

A2024 와 SM45C 마찰용접의 열전달 해석 (Heat Transfer Analysis of Friction Welding of A2024 to SM45C)

  • 이상윤;윤병수
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.65-70
    • /
    • 2001
  • The hear transfer mechanism initiating the friction welding is examined and a transient three dimensional heat conduc-tion model for the welding of two dissimilar cylindrical metal bars is investigated. The cylindrical metal bars are made of materials made of A2024 and SM 45C. Numerical simulations of heat flow are performed using the finite volume method. Respectively. Commercial FLUENT code is used in the heat flow simulation and maximum temperature and distribution of temperature are calculated. Temperature of friction welded joining face is compared with the temperature distribution measured by experiment and numerical simulation. The maximum temperature of friction welded joining face is lower than melting point of A2024-T6 aluminum alloy using insert metal. The temperature distribution of friction welded join- ing face with insert metal is more uniform than that of without inset metal.

  • PDF

일정 열유속 조건의 판형 히터에 의한 해빙과정의 수치해석 (Numerical Analysis of the Melting Process of Ice Using Plate Heaters with Constant Heat Flux)

  • 김학구;정시영;허남건;임태원;박용선
    • 설비공학논문집
    • /
    • 제19권6호
    • /
    • pp.434-440
    • /
    • 2007
  • One of the cold start problems of a FCV is the freezing of the water in the water tank when a FCV is not in operation and the surrounding temperature drops below $0^{\circ}C$. The ice in the tank should be melted as quickly as possible for a satisfactory operation of fuel cell vehicles. In this study, the melting process for the constant heat fluxes of the plate heaters was numerically calculated in the 2-D model of the tank and plate heaters. The enthalpy method and FVM code was used for this analysis. The changes of the temperature with heat fluxes and the heat transfer area could be investigated. The energy balance error was found to increase with the heat flux. From this numerical analysis, the proper heat flux value and some important design factors relating local overheating and pressurization of the water tank could be examined.

CO2 기반 금형 급속 냉각기술의 수치해석적 연구 (Numerical Analysis of CO2-Based Rapid Mold Cooling Technology)

  • 최재혁
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.61-66
    • /
    • 2023
  • In this study, we developed a simulation methodology for a technology that rapidly cools molds by directly spraying them with CO2 in its liquefied gaseous state. Initially, a simulation verification process was conducted using ANSYS Fluent's heat transfer analysis based on temperature values measured in prior research experiments, ensuring a comparable temperature could be calculated. Subsequently, the validated analysis method was employed to evaluate design factors that exert the most significant influence on cooling. An evaluation was conducted based on three factors: part thickness, mold thickness, and the melting temperature of material. Using a full factorial design approach, a total of 27 analyses were completed and subsequently calculated through analysis of means. The impact assessment was carried out based on the temperature values at the product's core. The results indicated that the thickness of the mold had the highest influence, while the melting temperature of material had the least.

냉각수 순환 방식 가열원 형상에 따른 요소수 해동 특성에 관한 수치적 연구 (Numerical Investigation of the Urea Melting and Heat Transfer Characteristics with Three Different Types of Coolant Heaters)

  • 이승엽;김만영;이천환;박윤범
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.125-132
    • /
    • 2012
  • Urea-SCR system, which converts nitrogen oxides to nitrogen and water in the presence of a reducing agent, usually AdBlue urea solution, is known as one of the powerful NOx reduction systems for mobile as well as stationary applications. For its consistent and reliable operation in mobile applications, such various problems as transient injection, ammonia slip, and freezing in cold weather have to be resolved. In this work, therefore, numerical study on three-dimensional unsteady heating problems were analyzed to understand the melting and heat transfer characteristics such as urea liquid volume fraction, temperature profiles and generated natural convection behavior in urea solution by using the commercial software Fluent 6.3. After validating by comparing numerical and experimental data with pure gallium melting phenomena, numerical experiment for urea melting is conducted with three different coolant heating models named CH1, 2, and 3, respectively. Finally, it can be found that the CH3 model, in which more coolant is concentrated on the lower part of the urea tank, has relatively better melting capability than others in terms of urea quantity of $1{\ell}$ for start-up schedule.

대류가열 비정상 접촉융해에 대한 해석해 (An Analytical Solution for the Unsteady Close-Contact Melting by Convective Heating)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.450-458
    • /
    • 2000
  • This study deals with the unsteady close-contact melting of solid blocks on a flat surface subject to convective heating. Normalizing the model equations in reference to the steady solution successfully leads them to cover constant heat flux and isothermal limits at small and large extremes of the Biot number, respectively. The resulting equations admit a compactly expressed analytical solution, which includes the previous solutions as a subset. Based on the steady solution, the characteristics of close-contact melting can be categorized into constant heat flux, transition, and isothermal regimes, the boundaries of which appear to be nearly independent of the contact force. The unsteady solutions corresponding to Biot numbers in the transition regime show intermediate behaviors between those of the two limits. With a proper approximation, the present solution procedure can cope with the case of variable fluid temperature and heat transfer coefficient. Regardless of imposed conditions, the mean normalized Nusselt number during the unsteady process asymptotically approaches to a constant value as the Biot number comes close to each limit.

PCAS공정에 의한 고융점 소결체 열전달 해석 및 특성분석 (Thermal Characteristic Simulation and Property Evaluation of High Melting Point Materials by Pulsed Current Activated Sintering Process)

  • 남효은;장준호;박현국;오익현
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.214-222
    • /
    • 2017
  • In this study, the effects of internal heat treatment associated sintering temperatures were simulated by the Finite Element Method (FEM). The sintering mechanism of pulsed current activated sintering process (PCAS) is still unclear because of some unexplainable heat transfer phenomena in coupled multi-physical fields, as well as the difficulty in measuring the interior temperatures of metal powder. We have carried out simulation study to find out thermal distributions between graphite mold and Ruthenium powder prior to PCAS process. For PCAS process, heating rate was maintained at $100^{\circ}C/min$ the simulation indicates that the sintering temperature range was between $1000^{\circ}C$ to $1300^{\circ}C$ under 60 MPa. The heat transfer inside the Ruthenium sintered-body sample was modelled through the whole process in order to predict the minimum interior temperature. Thermal simulation shows that the interior temperature gradient decreased by graphite punch length and calculation results well agreed with the PCAS field test results.

태양열 발전을 위한 고온 축열 물질의 열전달 특성 (Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation)

  • ;김기만;한귀영;서태범;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.63-69
    • /
    • 2007
  • The heat transfer characteristics of inorganic salt for high temperature heat storage material of solar power system were examined. The inorganic salts employed in this study was a mixture of $NaNO_3$ and $KNO_3$ and the operating temperature range was determined by measuring the melting temperature with DSC and by measuring the thermal decomposition temperature with TGA. The heat transfer characteristics was qualitatively obtained in terms of temperature profiles of salt in the tanks during the heat storage and heat release process as a function of steam flow rates, steam inlet temperature and the inlet position of steam. The effects of steam flow rates and inlet temperature of steam were experimentally determined and the effect of natural convection was observed due to significant density difference with temperature.

초기적으로 과냉각된 수직실린더 내부 물질의 상변화 과정 (Phase change process of the initially subcooled material in a vertical cylinder)

  • 백영렬;이재헌
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.24-35
    • /
    • 1997
  • Melting process inside in a vertical cylinder has been investigated numerically to observe heat transfer characteristics in the latent heat storage vessel applied to the thermal storage system. The time-dependent boundary fitted coordinate system was introduced to overcome the difficulty caused by the moving boundary. The present results are in good agreement with the available previous data when the initial subcooling effect of the solid phase is not considered. It is found that the melting is promoted by the natural convection, but is delayed by the initial subcooling effect of the solid phase.