• Title/Summary/Keyword: Melted Shape

Search Result 55, Processing Time 0.025 seconds

A study on the arc discharge characteristics of liquid insulating materials for electrical discharge machine (방전가공기용 액체 절연재료의 아크 방전 특성 연구)

  • 김상현;김해종;마대영;신태민
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.564-571
    • /
    • 1995
  • This paper deals with the arc discharge characteristics of kerosene oil as a basic study on electrical discharge machine. Using needle electrode the discharge voltage, discharge current, discharge energy and the shape of discharge crater are measured. In consequence, it becomes clear that the discharge crater(depth, height, diameter) is depending on the discharge energy. Rapid increase in depth, height and diameter of discharge crater was observed during initial discharge, where discharge energy is large. However, rather slow decrease of those values was found when discharge energy is low or N is more than 3. As the ratio of $I_p$$T_on$ increase, the shape of discharge crater gets near circle. The protuberances of the discharge crater were not formed by the melted needle electrode but by the that of work piece.

  • PDF

Effects of Cutting Angle on Kerf width and Edge Shape in the Hotwire Cutting of EPS Foam for the Case of Single-Sloped Cutting for VLM-s Process (VLM-s 공정을 위한 EPS 폼의 단순 경사 열선 절단시 절단 경사각이 절단폭과 모서리 형상에 미치는 영향)

  • 안동규;양동열
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.525-533
    • /
    • 2003
  • The dimensional accuracy and global roughness between successive layers of VLM-s, which is a new rapid prototyping process using hotwire cutter and EPS foam, depend significantly on the operating parameters of hotwire cutter. In the present study, the effect of cutting angle on the kerf width and edge shape in hotwire cutting of EPS foam for the case of single-sloped cutting with one cutting angle was investigated. Through single-sloped cutting tests, the modified relationship between kerf width and effective heat input, considering the effect of the cutting angle, and the relationship between the melted area and the cutting angle were obtained. In order to investigate the effect of cutting angles on the thermal field in EPS foam, transient heat transfer analyses using single-sloped volumetric heat flux model and locally-conformed mesh were performed. Through the comparison between experimental and numerical results, it was shown that the proposed analysis model is needed to estimate the three-dimensional temperature distribution of the EPS foam for the case of single-sloped hotwire cutting.

A Study of the Thermal Analysis of Horizontal Fillet Joints by Considering the Bead Shape in GMA Welding (GMA 용접에서 비드형상을 고려한 수평필릿용접부의 온도해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.71-78
    • /
    • 2001
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF

A STUDY ON THERMAL ANALYSIS OF HORIZONTAL FILLET JOINTS BY CONSIDERING BEAD SHAPE IN GMA WELDING

  • Cho, Si-Hoon;Kim, Jae-Woong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.151-155
    • /
    • 2002
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF

An Experimental Study on the fluidity properties of Polymer Concrete According to Replacement Ratio of Rapidly-Chilled Steel Slag and polymer resin (급냉 제강 슬래그 대체율과 폴리머 수지에 따른 폴리머 콘크리트의 유동특성에 관한 실험적 연구)

  • Choi, Duck-Jin;Kim, Jae-Won;Sun, Joung-Soo;Kim, Ha-Suk;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.75-78
    • /
    • 2007
  • The steel slag, a by-product which is produced by refining pig iron during the manufacture of steel, is mainly used as road materials after aging. It is necessary to age steel slag for long time in air because the reaction with water and free-CaO in steel slag could make the expansion of volume. This problem prevents steel slag from being used as aggregate for concrete. However, steel slag used in this study was controled by a air-jet method which rapidly cools substance melted at a high temperature. The rapidly-chilled method would prevent from generation of free-CaO in steel slag. Also, Molten steel slag rapidly-chilled by air in high speed becomes a fine aggregate of nearly spherical shape. This study dealt with the influence of the using rate of rapidly-chilled steel slag and polymer resin on fluidity of polymer concrete, as a results Since RCSS has spherical shape and high density, up to replacement ratio of 100%, increases concrete fluidity under same polymer content and decrease polymer content in order to secure the same fluidity

  • PDF

Laser Processing Technology using Metal Powders (금속분말의 레이저 공정 기술)

  • Jang, Jeong-Hwan;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder (Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Jeon, Chan-Hu;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Microstructural Evolution of Thick Tungsten Deposit Manufactured by Atmospheric Plasma Spray Forming Route (Plasma Spray Forming 공정에 의해 제조된 텅스텐 성형체의 미세조직 형성 거동)

  • Lim, Joo-Hyun;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.403-409
    • /
    • 2009
  • Plasma spray forming is recently explored as a near-net-shape fabrication route for ultra-high temperature metals and ceramics. In this study, monolithic tungsten has been produced using an atmospheric plasma spray forming and subsequent high temperature sintering. The spray-formed tungsten preform from different processing parameters has been evaluated in terms of metallurgical aspects, such as density, oxygen content and hardness. A well-defined lamellae structure was formed in the as-sprayed deposit by spreading of completely molten droplets, with incorporating small amounts of unmelted/partially-melted particles. Plasma sprayed tungsten deposit had 84-87% theoretical density and 0.2-0.3 wt.% oxygen content. Subsequent sintering at 2500$^{\circ}C$ promoted the formation of equiaxed grain structure and the production of dense preform up to 98% theoretical density.

Laser Processing Characteristic of Polystyrene Foam Pattern (폴리스티렌 폼 패턴의 레이저 가공 특성)

  • Kim, Jae-Do;Kang, Kyoung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.772-778
    • /
    • 2003
  • Polystyrene foam is easily melted and vapoured by heat, has a proper quality in the pattern manufacturing and has a low price. The objective of this study is to develop a rapid prototyping method fur polystyrene foam pattern manufacuring to use the eliminative pattern casting (EPC). Applying fur the rapid prototyping concept reversely, the unnecessary part of section is vapored away by heat source of laser beam. In order to examine the applicability between laser beam process and polystyrene foam material, the basic experiments such as hole, line, plane and contour process are carried out. With these results, various three-dimensional shape patterns are made and this rapid prototyping tool for polystyrene foam manufacturing.

Analysis of Phase Change Materials for Production of Changable Mold for Free-form Concrete Segment (FCS 가변형 몰드 생산을 위한 PCM 분석)

  • Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.150-151
    • /
    • 2014
  • A mold of free-form concrete segment can be used only one time. Thus, the construction duration and cost are increased. The materials of the mold such as wood and metal have limitations due to the implementation and reuse. The review of the material of the mold for free-form concrete segment is needed to reduce duration and production cost. Phase change material can be used both to implement free-shape by heating and to produce mold after cooling. After using Phase change material can be re-used to mold by heating. The scope of this study is many kind of phase change materials for molding. The aim of this study is to analyze the phase change materials for production of changable mold for free-form concrete segment. In this study, the paraffin wax that is melted at 64℃ was selected by considering both the energy efficiency and the weather of Korea.

  • PDF