• Title/Summary/Keyword: Melt-spun

Search Result 152, Processing Time 0.023 seconds

Deodorization Rate according to Zr-MOF Content and the Properties from Spinning Conditions of Polypropylene Non-woven Fabric Manufactured by Melt-blown Method (Melt-blown법에 의해 제조된 Polypropylene 부직포의 방사 조건별 특성과 기능화된 Zr-MOF 함유량에 따른 소취율 변화에 대한 연구)

  • Choi, Ik-Sung;Min, Mun-Hong;Kim, Han-Il;Lee, Woo-Seung;Noh, Kyung-Gyu;Park, Seong-Woo
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this study, the properties of polypropylene(PP) non-woven fabric spun under various conditions by the Melt-blown method were verified, and the deodorant content and deodorization of PP non-woven fabric after deodorant-treatment were investigated. PP non-woven fabrics are manufactured by varying the temperature of spin beam, hot air temperature and amount, the RPM of collector R/O and the distance between collector and spinneret, which affects the structure of the non-woven fabric. After that, the structural characteristics and air permeability of the non-woven fabric were measured. The experimental results show that the amount of air, the distance between the collector and the spinneret significantly affect the structural characteristics and air permeability of the PP non-woven fabric. And, regardless of the weight of the PP non-woven fabric, the deodorizing effect of UiO-66 MOF deodorant add-on ratio and content was higher.

Improved Thermal Bonding Behaviour of Polypropylene Non-wovens by Blending Different Molecular Weights of PP

  • Deopura, B.L.;Mattu, Ankush;Jain, Anurag;Alagirusamy, R.
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • Polypropylene filaments were spun from a mixture of PP chips of two different Melt Flow Index (MFI) (3 MFI and 35 MFI). A significant difference was observed in the melting characteristics of the resultant filaments from either of the individual components as observed from the DSC. The main difference being in the degree of melting achieved at any temperature in the initial stages of the melting range, which was found to be higher in case of the filaments spun from the b]end. These filaments were then thermally bonded using silicon oil bath and heated roller method. Subsequently the bond strength of the filaments was measured on the Instron Tensile Tester using the loop technique. The values of the world strengths obtained from the blend were compared with those made from the individual component. It was found that the bond strength of the bonds obtained from the blended filament at a given temperature was higher than that of the bonds made from the filaments of either of the individual components, which is also suggested by the DSC curves. The difference in the bond strength was found to be as high as 25% in case of the blend with 60:40 composition ratios of the 3 MFI and 35 MFI components respectively.

Preparation and Characterization of Low Infrared Emissivity Bicomponent Fibers with Radar Absorbing Property (레이더 흡수특성이 있는 저적외선 방출 복합섬유의 제조 및 특성 연구)

  • Yu Bin;Qi Lu
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Heavy weight of the camouflage materials was always the main problem. To solve it, the low infrared emissivity fibers with the radar absorbing property (LIFR) were prepared. The low infrared emissivity fibers (LIF) were firstly melt-spun by co-extrusion of polypropylene (PP) and PP/various fillers master-batches using general conjugate spinning. The infrared emissivity of LW with AA and ZnO was decreased respectively compared with that of pure polypropylene fibers. The infrared emissivity of LIF with 15 wt% Al and 2 wt% ZnO in the sheath-part can reach 0.58. To improve LIF radar absorbing property, LIFR was prepared by filling the 50 wt% ferrite and bronze in the core-part of LIF. The radar absorbing efficacy of LIFR was good and the infrared emissivity was low. For the characterization, fiber electron intensity instrument and differential scanning calorimetry (DSC) were used for the analysis of mechanical properties, thermal and crystallization behavior of the spun-fibers. Scanning electron microscopy (SEM) was carried out to observe the particle distribution of the bicomponent fibers.

THE MAGNETOSTRICTIVE PROPERTIES OF Dy-Fe-B ALLOYS WITH NANOCRYSTALLINE GRAIN STRUCTURE

  • Lim, S.H.;Kim, S.R.;Noh, T.H.;Lee, S.R.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.795-799
    • /
    • 1995
  • The magnetostriction versus field (${\lambda}-H$) curves for the melt-spun ribbons of $Dy_{x}{(Fe_{1-y}B_{y})}_{1-x}$ (x=0.2, 0.25, 0.3; y=0, 0.05, 0.1, 0.15, 0.2) alloys are measured systematically at various wheel speeds ranging from 10 to 50 m/sec. The ${\lambda}-H$ curves in most cases vary sensitively with the wheel speed and, in the wheel speed range where no amorphous phase is formed, the magnetic softness improves rather continuously with the wheel speed. This result is considered to be due to the reduced grain size with increasing wheel speed, which was confirmed by X-ray diffraction and transmission electron microscopy. In particular, homogeneous and ultrafine grains with size of about 10 nm are formed even in the as-spun state when the $Dy_{0.3}{(Fe_{1-y}B_{y})}_{0.7}$ alloys are quenched at the wheel speed of 30 m/sec (for the alloy with y=0.2) or 40 m/sec (for the alloys with $y{\leq}0.15$) and the ribbons having the nanocrystalline grain structure exhibit good magnetostrictive characteristics.

  • PDF

Magnetic Propertes of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ Nanocrystalline Alloys ($Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 초미세결정립합금의 자기특성)

  • 조용수;김만중;천정남;김택기;박우식;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.880-894
    • /
    • 1995
  • Magnetic properties of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ rrelt-spun alloys with 6 at% B content were studied aiming for finding out a new $\alpha$-Fe based Nd-Fe-B nanocrystalline alloy with good hard magnetic properties. $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys prepared by RSP crystallized to nanocrystalline phase. An optimally annealed $Nd_{3}{(Fe_{0.9}Co_{0.1})}_{87}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys had larger volume ratio of $\alpha$-Fe(Co) than that of higher Nd content alloy and showed high remanence of about 1.6 T. On the contrary, the increase of Nd content in $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ alloys gave rise to gradual increase of an amount of $Nd_{2}{(Fe,\;Co)}_{14}B$ phase and improved coercivity. An optimally annealed $Nd_{5}{(Fe_{0.9}Co_{0.1})}_{85}B_{6}Nb_{3}Cu_{1}$ alloy showed the most improved hard mag¬netic properties. The remanence, coercivityand energy product of the alloy were 1.35 T, 219 kA/m (2.75 kOe), and $129\;kJ/m^{3}$ (16.2 MGOe), respectively.

  • PDF

Effect of Melt-Spinning Process on Hydrogen Storage Properties of Mass-Produced Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 Alloy (대량용해 Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 수소저장합금의 용융방사공정을 통한 수소저장특성)

  • Kim, Jinho;Han, Kyusung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • Hydrogen storage as a metal hydride is the most promising alternative because of its relatively large hydrogen storage capacities near room temperature. TiMn2-based C14 Laves phases alloys are one of the promising hydrogen storage materials with easy activation, good hydriding-dehydriding kinetics, high hydrogen storage capacity and relatively low cost. In this work, multi-component, hyper-stoichiometric $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ C14 Laves phase alloys were prepared by a vacuum induction melting for a hydrogen storage tank. Since pure vanadium (V) is quite expensive, the substitution of the V element in these alloys has been tried and some interesting results were achieved by replacing V by commercial ferrovanadium (FeV) raw material. In addition, the melt-spinning process, which was applied to the manufacturing of some of these alloys, could make the plateau slopes much flatter, which resulted in the increase of reversible hydrogen storage capacity. The improvement of sloping properties of melt-spun $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloys was mainly attributed to the homogeneity of chemical composition.

Influence of Heat Treatment on Transformation Characteristics and Shape Recovery in Fe-X%/Mn-5Cr-5Co-4Si Alloy Ribbons (Fe-X%Mn-5Cr-5Co-4Si 합금 리본의 변태특성 및 형상기억능에 미치는 열처리 영향)

  • Kang, H.W.;Jee, K.K.;Jang, W.Y.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.160-166
    • /
    • 2001
  • The change of ribbon geometry, microstructure and shape recovery with Mn contents, wheel speed and various annealing temperature have been studied in Fe-X%Mn-5Cr-5Co-4Si (X%=15, 20, 24) shape memory alloy (SMA) ribbons rapidly solidfied by single roll chill-block melt-spinning process. The thickness and width of melt-spun ribbons are reduced, results in refining and uniformalizing grains with increasing wheel speed. In the ribbons melt-spun at a wheel speed of 15m/sec, both ${\varepsilon}$ and ${\alpha}^{\prime}$martensites are formed in ribbon 1 (15.5wt%Mn), while only ${\varepsilon}$ martensite is revealed in ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn). The volume fraction of ${\varepsilon}$ martensite is decreased with increasing Mn contents, and those of ${\varepsilon}$ as well ${\alpha}^{\prime}$martensites are increased due to thermal stress relief and grain growth with increasing annealing temperature. Ms temperatures of the ribbons 1, 2 and 3 are fallen with increasing Mn contents. $M_s$ temperatures of the ribbons 1, 2 and 3 annealed at $300^{\circ}C$ for 3 min are risen abruptly, but are nearly constant even at higher annealing temperature, i.e., 400, 500 and $600^{\circ}C$ for 3 min. Shape recovery of the ribbons 1, 2 and 3 increased 30%, 52% and 69% with Mn contents, respectively. Shape recovery of ribbon 1 (15.5wt%Mn) formed ${\varepsilon}$ and ${\alpha}^{\prime}$martensites decreased because of the presence of ${\alpha}^{\prime}$martensite but those of ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn) formed ${\varepsilon}$ martensite increased with increasing annealing temperature.

  • PDF

Characterization of SiC Fiber Derived from Polycarbosilanes with Controlled Molecular Weight (분자량이 조절된 폴리카보실란으로부터 제조한 SiC Fiber의 특성분석)

  • Shin, Dong-Geun;Riu, Doh-Hyung;Kim, Younghee;Kim, Hyung-Rae;Park, Hong-Sik;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.593-598
    • /
    • 2005
  • Polycarbosilane was synthesized by the Kumada rearrangement of polydimethylsilane in the presence of zeolite (ZSM-5) as a catalyst at $350^{\circ}C$. The prepared polycarbosilane had very low molecular weight ($M_w=500$), so that it was not suitable to fabricate SiC fiber by melt spinning. Further polymerization of PCS was conducted around $400^{\circ}C$ to obtain spinnable polycarbosilane. After polymerization, the polycarbosilanes were isolated by distillation according to the molecular weight distributions. The PCS with a controlled molecular weight distribution was spun into continuous polycarbosilane green fibers. The PCS green fiber was successfully transformed into silicon oxycarbide fiber. The room temperature strength of the SiC fiber was around 1.5 - 1.8 GPa. The oxidation behavior and the tensile strength after oxidation were also evaluated.

Hydrogen Permeation Properties of $(Ni_{60}-Nb_{40})_{95}-Pd_5$ Amorphous Metallic Membrane ($(Ni_{60}-Nb_{40})_{95}-Pd_5$ 비정질 금속막의 수소투과 특성)

  • Lee, Dock-Young;Kim, Yoon-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.359-366
    • /
    • 2008
  • Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In this processes for hydrogen production from fossil fuels, separation and purification is a critical technology. $(Ni_{60}-Nb_{40})_{95}-Pd_5$ alloy ingots were prepared by arc-melting the mixture of pure metals in an Ar atmosphere. Melt-spun ribbons were produced by the single-roller melt-spinning technique in an Ar atmosphere. Amorphous structure and thermal behavior were characterized by XRD and DSC. The permeability of the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy membrane was characterized by hydrogen permeation experiments in the temperature range 623 to 773 K and pressure of 2 bars. The maximum hydrogen permeability was $3.54{\times}10^{-9}[mol{\cdot}m^{-1}s^{-1}{\cdot}pa^{-1/2}]$ at 773 K for the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy.

Hydrogen Storage Characteristics of Melt Spun Mg-23.5Ni-xCu Alloys and Mg-23.5Ni-2.5Cu Alloy Mixed with $Nb_{2}O_{5}$ and $NbF_{5}$

  • Hong, Seong-Hyeon;Kwon, Sung-Nam;Song, Myoung Youp
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.298-303
    • /
    • 2011
  • Mg-23.5 wt%Ni-xwt%Cu (x = 2.5, 5 and 7.5) samples for hydrogen storage were prepared by melt spinning and crystallization heat treatment from a Mg-23.5 wt%Ni-5 wt%Cu alloy synthesized by the gravity casting method. They were then ground under $H_2$ to obtain a fine powder. Among these samples the Mg-23.5Ni-2.5Cu sample had the highest hydriding and dehydriding rates after activation. The Mg-23.5Ni-2.5Cu sample absorbed 3.59 and 4.01 wt%H for 10 and 60 min, respectively, at 573K under 12 bar $H_{2}$. The activated 88(87.5Mg-10Ni-2.5Cu)-$5Nb_{2}O_{5}-7NbF_{5}$ sample absorbed 2.93 wt%H for 10 min, and 3.14 wt%H for 60 min at 573K under 12 bar $H_{2}$.