• Title/Summary/Keyword: Melt flow rate

Search Result 89, Processing Time 2.125 seconds

The Effects of Packing and Cooling Stages on the Molded Parts in Injection Molding Process (사출 성형시 보압 및 냉각 과정이 성형품에 미치는 영향)

  • 구본흥;신효철;이호상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1150-1160
    • /
    • 1993
  • The behavior of polystyrene in the strip cavity during the packing and cooling stages for an injection molding process is examined numerically. The mathematical model is based on the unified post-filling model and finite element/finite difference methods are used to solve simultaneously the continuity, momentum and energy equations coupled to an equation of state. Simulated results show that the density of the molded parts is lower in the core than at the skin, and that the hotter the melt or the higher the packing pressure, the higher the density in the core. The density variation during the packing stage comes up to 50% compared with the total density variation. Also, the density variation after gate sealing and the effect of cooling rate on the equation of state are negligible.

The Discharge Performance Optimization of a Forced Convection Type PCM Refrigeration Module Used in a Refrigeration Truck (냉동트럭용 강제대류방식 PCM 냉동모듈의 방냉성능 최적화에 관한 연구)

  • Lel, Xu;Kim, Wonuk;Lee, Sang-Ryoul;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.624-630
    • /
    • 2013
  • A truck refrigeration system using phase change material (PCM) is expected to have a lower noise level, reduced energy cost, and much lower local greenhouse gas emission. Recently, a forced convection type PCM refrigeration module has been developed. As the operation time increases, the PCM around the air inlet melts, because of a large temperature difference between the PCM and air. Therefore, the latent heat transfer area decreases and the heat transfer rate of the module decreases even though there is a lot of PCM which does not melt around the air outlet. A computational fluid dynamic modeling of the PCM refrigeration module was developed and validated by the experiment. Using the CFD, the design parameters, such as the mass flow rate of the air and roughness of the slab, were investigated to improve the heat transfer inhomogeneity. As a result, the adoption of partial roughness on the slabs improved the heat transfer inhomogeneity and reduced a fan power.

Heat Flow Analysis of Ferritic Stainless Steel Melt during Ti wire feeding (Ti 와이어 피딩에 따른 페라이트계 스테인레스강 제강시 열유동 해석)

  • Kim, Min-Gi;Hwang, Dong-Chan;Choi, Jae-Joo;Shin, Sang-Yoon;Ye, Byung-Joon;Kim, Ji-Hun;Kim, Won-Bae
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.277-283
    • /
    • 2009
  • Recently an increase in production cost of 300 series stainless steel with a sudden increase in nickel cost has caused a decrease in demand for 300 series stainless steel so that 400 series stainless steel has begun to make a mark. Although 400 series stainless steel has good properties, it has a problem of lack of corrosion resistance. There is Ti in 400 series stainless steel alloys to solve the problem above and it has lower density than the others. For that reason, wire feeding process has been applied for adding Ti alloy in 400 series stainless steel. This paper presents consideration of variation on the depth of wire dissolution by conditions of wire feeding which are wire injection speed, the temperature of molten steel, wire diameter and bubble generation rate. The computer program for solution of conducting wire feeding has been developed in Flow3D.

Numerical Study on Two-phase Natural Circulation Flow by External Reactor Vessel Cooling of iPOWER (혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구)

  • Park, Yeon-Ha;Hwang, Do Hyun;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • The domestic innovative power reactor named iPOWER will employ the passive molten corium cooling system(PMCCS) to cool down and stabilize the core melt in the severe accident. The final design concept of the PMCCS is yet to be determined, but the in-vessel retention through external reactor vessel cooling has been also considered as a viable strategy to cope with the severe accident. In this study, the two-phase natural circulation flow established between the reactor vessel and the insulation was simulated using a thermal-hydraulic system code, MARS-KS. The flow path of cooling water was modeled with one-dimensional nodes, and the boundary condition of the heat load from the molten core was defined to estimate the naturally-driven flow rate. The evolution of major thermal-hydraulic parameters were also evaluated, including the temperature and the level of cooling water, the void fraction around the lower head of the reactor vessel, and the heat transfer mode on its external surface.

Preparation of High Performance Hybrid Chemical Filter using Hot Melt Adhesive by Web Spray and Their Adsorption Properties (핫멜트 Web spray법을 이용한 고기능성 복합 화학필터의 제조 및 흡착특성)

  • Choi, Yong Jae;Shin, Kyoung Sub;Hwang, Taek Sung
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.141-147
    • /
    • 2009
  • In this study, the high performance hybrid chemical filter (HPHCF) was prepared by web spray using hot melt adhesive. The material of HPHCF was conditionally made of ion exchange resin and PP non-woven fabric. The optimum temperature and pressure for manufacturing of HPHCF conditions were such as $170^{\circ}C$ and 50 psi, respectively. The characteristics of preparated HPHCF and their adsorption properties of ammonia gas were investigated. The ion exchange capacity (IEC) of HPHCF was increased with increasing the resin contents and their values were higher than pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with the increase of packing density of hybrid ion exchange fabrics in the column. It showed 13 min which the adsorption breakthrough time was slower than resin and fibers. The maximum value of adsorption for ammonia gas was 98 percent. And also, the velocity was increased with increasing concentration and flow rate of ammonia gas.

  • PDF

Evaluation of Kinetic Parameters and Thermal Stability of Melt-Quenched BixSe100-x Alloys (x≤7.5 at%) by Non-Isothermal Thermogravimetric Analysis

  • Ahmad, Mais Jamil A.;Abdul-Gader Jafar, Mousa M.;Saleh, Mahmoud H.;Shehadeh, Khawla M.;Telfah, Ahmad;Ziq, Khalil A.;Hergenroder, Roland
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.110-120
    • /
    • 2017
  • Non-isothermal thermogravimetry (TG) measurements on melt-quenched $Bi_xSe_{100-x}$ specimens (x=0, 2.5, 7.5 at%) were made at a heating rate ${\beta}=10^{\circ}C/min$ in the range $T=35^{\circ}C{\sim}950^{\circ}C$. The as-measured TG curves confirm that $Bi_xSe_{100-x}$ samples were thermally stable with minor loss at $T{\leq}400^{\circ}C$ and mass loss starts to decrease up to $600^{\circ}C$, beyond which trivial mass loss was observed. These TG curves were used to estimate molar (Se/Bi)-ratios of $Bi_xSe_{100-x}$ samples, which were not in accordance with initial composition. Shaping features of conversion curves ${\alpha}(T)-T$ of $Bi_xSe_{100-x}$ samples combined with a reliable flow chart were used to reduce kinetic mechanisms that would have caused their thermal mass loss to few nth-order reaction models of the form $f[{\alpha}(T)]{\propto}[1-{\alpha}(T)]^n$ (n=1/2, 2/3, and 1). The constructed ${\alpha}(T)-T$ and $(d{\alpha}(T)/dT)-T$ curves were analyzed using Coats-Redfern (CR) and Achar-Brindley-Sharp (ABS) kinetic formulas on basis of these model functions, but the linearity of attained plots were good in a limited ${\alpha}(T)-region$. The applicability of CR and ABS methods, with model function of kinetic reaction mechanism R0 (n=0), was notable as they gave best linear fits over much broader ${\alpha}(T)-range$.

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

Crosslinking Characteristics of Ethylene Vinyl Acetate Copolymer by the Structure of Crosslinking Agents (가교제의 화학 구조에 따른 에틸렌 비닐 아세테이트 공중합체의 가교 특성 고찰)

  • Lee, Jong-Rok;Choi, Chang-Suk;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.131-136
    • /
    • 2009
  • The effect of the chemical structure of the peroxide crosslinking agent on the reactive crosslinking reaction of EVA was investigated and the physical properties of the crosslinked EVA were studied as well. It was found that peroxide with one peroxy group (perbutyl peroxide) is more effective than peroxides with two peroxy group (2,5 dimethyl 2,5 di(tert-butylperoxyl) hexane and 1,1-di(tert-buthylperoxy)-3,3,5-tri-methylcyclohexane) in melt reactive crosslinking reaction of EVA. The rate of crosslinking was increased by the use of crosslinking acceleration agent but the noticeable effect on degree of crosslinking was not found. Crosslinking caused the lowering of melt flow ability of EVA but mechanical properties were enhanced by the crosslinking of EVA.

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Preparation of Hybrid Cation Ion Exchange Fibers by Web Spray and Their Adsorption Properties for Ammonia Gas (Web Spray 법을 이용한 복합 양이온교환섬유의 제조 및 암모니아 흡착특성)

  • Park, Seong-Wook;Lee, Hoo-Kun;Rhee, Young-Woo;Jung, Boo-Young;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.479-484
    • /
    • 2007
  • In this study, the hybrid ion exchange fibers (HIEF) were prepared by using web spraying muthod with hot melt adhesive. Characteristics of HIEF and their adsorption properties for ammonia gas were investigated. The ion exchange capacity (IEC) of HIEF was increased with increasing the resin contents and their values were higher than those of pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with an increase in packing density of hybrid ion exchange fabrics in the column. The adsorption breakthrough time was 270 min, which was slower than those of the resin and fibers. The maximum value of adsorption for ammonia gas was 94%. The breakthrough time was also increased with increasing the concentration and flow rate of ammonia gas. The reaction constant(k) for ammonia gas was increased with increasing the concentration and flow rate of the gas, while it was decreased an the mass was increased.