• 제목/요약/키워드: Melt casting process

검색결과 67건 처리시간 0.021초

고전도성 부품용 Al-Cu 주조복합재료의 계면 특성 (Interfacial Characteristics of Al-Cu Cast Composites for High Conductivity Applications)

  • 김정민;김남훈;고세현
    • 한국주조공학회지
    • /
    • 제38권3호
    • /
    • pp.55-59
    • /
    • 2018
  • To optimize the conductivity and to reduce the weight by as much as possible, Al-Cu composites were prepared through a suction-casting procedure. Pure copper metal foam was infiltrated by melted aluminum with the use of the vacuum, after which warm rolling was conducted to remove several remaining pores at the interface between the Cu foam and the aluminum matrix. Despite the short casting time, significant dissolution of Cu into the melt was observed. Moreover, it was found that various Al-Cu intermetallic compounds arose at the interface during the isothermal heating process after the casting and rolling steps. The average thickness of the Al-Cu intermetallic compound tended to increase in proportion to the heating time. The electrical and thermal conductivity levels of the cast composites were found to be comparatively low, mainly due to the dissolution of the Cu foam and the formation of intermetallics at the interface.

용탕단조법에 의한 고강도 Mg-Li-Al합금 제조 (Fabrication of High Strength Mg-Li-Al Alloys by Squeeze Casting Process)

  • 한창화;황영하;김영우;김도향;홍준표
    • 한국주조공학회지
    • /
    • 제17권3호
    • /
    • pp.267-275
    • /
    • 1997
  • Fabrication of high strength Mg-Li-Al alloys by squeeze casting was established by the stabilization of melt and mold temperatures, applied pressure and the refining method. The entrapment of inclusions during pouring was prevented using 30 ppi alumina foam filter. The as-cast microstructure consists of a mixture of ${\alpha}$ and ${\beta}$ phases including AILi and $MgLi_2$, Al particles, which are distributed in the ${\beta}$ matrix. The grain sizes of gravity and squeeze casting alloys were 288 ${\mu}m$ and 207 ${\mu}m$ respectively. The addition of Al in Mg-Li alloys promoted the formation of second phase particles, which were adjusted to optimize the properties of Mg-Li-Al alloys. The Mg-10wt%Li-5wt%Al alloy after heat treatment at $350^{\circ}C$ for 1 hour showed the maximum hardness value. This is due to the facts that the amounts of ${\alpha}$ and ${\beta}$ phases and their distributions are dependent upon the solution treatment temperature, and that the amounts of AILi and $MgLi_2Al$ particles are dependent upon the Al content.

  • PDF

사용후핵연료 파이로 공정 중 우라늄 전착물의 잉곳 제조 방법 (Uranium ingot casting method with Uranium deposit in a Pyroprocessing)

  • 이윤상;조춘호;이성호;김정국;이한수
    • 방사성폐기물학회지
    • /
    • 제8권1호
    • /
    • pp.85-89
    • /
    • 2010
  • 사용후핵연료 파이로프로세싱 공정 생성물인 우라늄 전착물을 잉곳 형태로 주조하는 공정이 있다. 이 논문에서는 실험실 규모의 우라늄 전착물 잉곳 주조 장치에 대한 설계 개념을 소개하고, 이에 따라 제작된 장치의 성능 시험 결과 및 우라늄을 사용한 잉곳 주조 시험 결과를 소개한다. 이 장치는 도가니를 경동시켜 우라늄 용탕을 주형에 주입하여 우라늄 잉곳을 제조하며, 우라늄 전착물을 연속으로 주입할 수 있는 컵 형태의 원료 장입장치를 장착하였다. 이러한 장치를 사용하면 우라늄 전착물의 잉곳 생산성을 높일 수 있다. 실험 결과 우라늄 원료를 장입하여 주조한 결과 수축공이 적은 양호한 주물을 제조하는데 성공하였으며, 이러한 실험실 규모의 장치를 개발한 경험을 활용하여 공학규모의 장치를 설계하는데 활용하였다.

알루미늄 합금 소실모형주조재의 밀도 및 기계적 성질 (Density and Mechanical Properties of Aluminum Lost Foam Castings)

  • 김기영;오돈석;최경환;조규섭;이경환
    • 한국주조공학회지
    • /
    • 제24권2호
    • /
    • pp.94-100
    • /
    • 2004
  • Gas porosity which is a common defect in aluminum alloy casting, is also thought to be severer in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fundamental experiments were carried out to evaluate the effect of process variables such as the melt treatment, the cooling rate and pouring temperature on the density and mechanical properties in A356.2 castings with simple bar shape. The density of grain refined specimen was slightly lower than that of degassed one, but was higher than that of no treated one and that of shot ball packed specimen was higher than the other specimens. The tensile strength and elongation were in the ranges of $200{\sim}230MPa$ and $0.5{\sim}1.5%$ respectively. The density and hardness of lost foam cast specimens decreased with increase in pouring temperature.

알루미늄 용탕에서 Al-TiO2-C의 연소합성반응에 의한 in-situ Al/TiC 복합재료의 제조에 미치는 공정변수의 영향 (Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO2-C Powder Mixtures)

  • 김화정;이정무;조영희;김종진;김수현;이재철
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.677-684
    • /
    • 2012
  • A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of $Al-TiO_2-C$ pellet was directly added into an Al melt at $800-920^{\circ}C$ to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in $1-2{\mu}m$ at the melt temperature above $850^{\circ}C$. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, $Al_3Ti$. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

정밀주조법으로 제조된 Co계 초내열 합금의 미세구조 (Microstructure of Co-base superalloy prepared by a investment casting)

  • 이정일;이호준;조현수;팽종민;박종범;류정호
    • 한국결정성장학회지
    • /
    • 제27권6호
    • /
    • pp.313-318
    • /
    • 2017
  • 본 연구에서는 가스터빈용 Co계 합금인 ECY768 as-cast 합금 시편의 melt/mold 온도에 따른 결정구조 및 미세조직 및 변화를 고찰하였다. As-cast ECY768 샘플들은 전반적으로 amorphous 특성을 보여주고 있으며 기지인 Co상과 금속탄화물상으로 구성되어 있음을 확인하였으며, mold의 온도에 따른 XRD 패턴에서의 결정성 변화를 고찰하였다. 광학현미경(OM)을 이용하여 as-cast 샘플들의 결정립계에 석출물을 관찰하였다. 또한 FE-SEM에 의한 미세구조 분석시 Co기지상과 금속 탄화물의 석출물이 발견되는 영역이 관찰하였으며 EDS 분석에 의해 금속과 탄소의 화학양론이 확연히 다른 $M_{23}C_6$ 및 MC-type 조직으로 확인할 수 있었다. 여기서 $M_{23}C_6-type$의 탄화물은 Cr 원소를 주성분으로 하는 것을 확인할 수 있었으며, MC-type 탄화물은 Ta 원소가 주성분임을 확인할 수 있었다.

주조용 합금으로서 Mg-Y-X (X=Al or Mm) 합금의 주조성 및 크리프 성질에 관한 연구 (Study on Castability and Creep Properties of Mg-Zn-Y-X (X=Al or Mm) Alloys as Casting Alloy)

  • 임현규;이주연;김원태;김도향
    • 한국주조공학회지
    • /
    • 제26권1호
    • /
    • pp.34-39
    • /
    • 2006
  • In the present study, the possibility of Mg-Zn-Y alloys as high temperature casting alloys has been investigated. The fluidity of alloys containing yttrium were better than that of commercial AZ91 alloy because the oxide layer on the surface reduced the reaction between melt, and air and mold, which would reduce the resistance during the process of filling the mold. However, this oxide film reduced the hot-tearing resistance. In the case of ZAW942, this alloy exhibited fluidity and hot-tearing resistance better than AZ91 alloy. Because of thermally stable quasicrystal and other phases obstructed the movement of grains, the creep resistance of alloys containing rare earth elements more than 2 wt% was better than that of AZ91 alloy.

반응생성 합성에 의한 (TiB+TiC) 입자강화 Ti기 복합재료의 미세조직 및 인장특성 평가 (Microstructure and Tensile Property of In-Situ (TiB+TiC) Particulate Reinforced Titanium Matrix Composites)

  • 최봉재;김영직
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.780-789
    • /
    • 2010
  • The aim of this study is to evaluate the microstructure and tensile property of in-situ (TiB+TiC) particulate reinforced titanium matrix composites (TMCs) synthesized by the investment casting process. Boron carbide ($1,500{\mu}m$ and $150{\mu}m$) was added to the titanium matrix during vacuum induction melting, which can provide the in-situ reaction of $5Ti+B_4C{\rightarrow}4TiB+TiC$. 0.94, 1.88 and 3.76 wt% of $B_4C$ were added to the melt. The phases identification of the in-situ synthesized TMCs was examined using scanning electron microscopy, an X-ray diffractometer, an electron probe micro-analyzer and transmission electron microscopy. Tensile properties of TMCs were investigated in accordance with the reinforcement size and volume fraction. The improvement of tensile property of titanium matrix composites was caused by load transfer from the titanium matrix to the reinforcement and by grain refinement of titanium matrix and reinforcements.

Effect of Al on Structural and Magnetic Characteristics of CoCrFeNiMnAlx High Entropy Alloys

  • Majid Tavoosi;Ali Ghasemi;Gholam Reza Gordani;Mohammad Reza Loghman Estarki
    • 한국재료학회지
    • /
    • 제33권3호
    • /
    • pp.95-100
    • /
    • 2023
  • This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.