• 제목/요약/키워드: Melt Spray

검색결과 29건 처리시간 0.02초

용융 분무에 의한 질산암모늄 액적의 분열 메카니즘 (Disintegration Mechanism of Ammonium Nitrate Droplets by Melt Spray)

  • 안진환;김재경;김준형;구기갑
    • 한국군사과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.206-212
    • /
    • 2009
  • The pressurized spray system with nitrogen gas was designed to fabricate the spherical AN(ammonium nitrate) particles. When AN melt was sprayed from a nozzle with equivalent diameter of 0.28mm into an ambient dry air, the ligament breakup mechanism of the molten AN was found to be responsible for the droplet formation(or disintegration) of AN melt. In the experimental range of spray temperature with $170{\sim}200^{\circ}C$ and atomization pressure with $0.1{\sim}0.4MPa$, the spherical AN particles with mean diameter of $130{\sim}250{\mu}m$ were obtained.

분무성형 및 반응분무성형법으로 제조된 분산강화 동합금의 항복강도에 미치는 분산상의 영향 (The Effect of Dispersoid on Yield Strength of Dispersion Strengthened Cu Alloys Fabricated by Spray Forming and Reactive Spray Forming)

  • 이종상;정재영;이언식;박우진;안상호;김낙준
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 압출 및 인발 심포지엄
    • /
    • pp.38-46
    • /
    • 1999
  • Dispersion strengthened Cu alloys have been manufactured by spray forming and also by reactive spray forming, followed by hot extrusion of the spray deposited billets. The size of dispersed particles in the reactive spray formed alloy was much finer than that in the spray formed alloy. That was because the dominant chemical reaction between Ti and B had occurred in Cu-Ti-B alloy melt in spray forming while it had occurred after deposition of droplets in reactive spray forming. The yield strength of the reactive spray formed alloy was greater than that of the spray formed alloy. To understand the mechanism responsible for this observed strengthening, the yield strength of two Cu alloys were analyzed using the dislocation pile-up model and Orowan mechanism, which were fairly consistent with the experimental results. Increase in yield strength of reactive spray formed alloy relative to spray formed alloy was largely attributed to nano-scale TiB dispersoids.

  • PDF

Effect of the Pressure Formation at the Tip of the Melt Delivery Tube in Close-coupled Nozzles in Gas Atomization Process

  • Unal, Rahmi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.477-478
    • /
    • 2006
  • Close-coupled atomizers are of great interest and controlling their performance parameters is critical for metal powder producing and spray forming industries. In this study, designed close-coupled nozzle systems were used to investigate the effect of the nozzle types and protrusion length of the melt delivery tube on the pressure formation at the melt delivery tube tip. The observed metal flow rate was not behaving as what was earlier assumed, namely that, deeper aspiration enhanced metal flow rate. Higher aspiration pressure at the tip of the melt delivery tube increases the stability of atomization process.

  • PDF

노즐 형상변화에 따른 HVOF 용사총에서의 유동특성에 관한 수치적 연구 (A Numerical Study on Flow Characteristics in HVOF Thermal Spray with Various Torch Shapes)

  • 백재상;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3062-3067
    • /
    • 2007
  • HVOF thermal spray guns are now being widely used to produce protective coatings, on the surfaces of engineering components. HVOF technology employs a combustion process to heat the gas flow and melt the coating materials which are particles of metals, alloys or cermets. Particle flow which is accelerated to high velocities and combustion gas stream are deposited on a substrate. In order to obtain good quality coatings, the analysis of torch design must be performed. The reason is that the design parameters of torch influence gas dynamic behaviors. In this study, numerical analysis is performed to predict the gas dynamic behaviors in a HVOF thermal spray gun with various torch shapes. The CFD model is used to deduce the effect of changes in nozzle geometry on gas dynamics. Using a commercial code, FLUENT which uses Finite Volume Method and SIMPLE algorithm, governing equations have been solved for the pressure, velocity and temperature distributions in the HVOF thermal spray torch.

  • PDF

핫멜트 Web spray법을 이용한 고기능성 복합 화학필터의 제조 및 흡착특성 (Preparation of High Performance Hybrid Chemical Filter using Hot Melt Adhesive by Web Spray and Their Adsorption Properties)

  • 최용재;신경섭;황택성
    • 접착 및 계면
    • /
    • 제10권3호
    • /
    • pp.141-147
    • /
    • 2009
  • 본 연구는 web spray 분사방식으로 핫멜트 접착제를 이용하여 high performance hybrid chemical filter (HPHCF)를 제조하였다. HPHCF은 이온교환 수지와 PP 부직포를 사용하였고, HPHCF의 제조 시 최적 조건은 핫멜트의 온도는 $170^{\circ}C$에서 분사압력은 50 psi일 때 최적의 제조 조건을 나타내었다. 제조된 HPHCF의 특성 및 암모니아 흡착성능을 측정하였다. HPHCF 이온교환용량은 수지 부착량이 증가함에 따라 증가하였으며 단일 수지와 이온교환섬유의 이온교환용량보다 크게 나타났다. 또한 암모니아의 제거율은 HPHCF의 충진 밀도가 증가할수록 증가하였으며 흡착 파과시간은 13 min으로 단일 섬유나 수지에 비해 길게 나타났고 최대 암모니아 흡착량은 98%이었다. 또한 암모니아 흡착 파과시간은 유량 및 농도가 증가함에 따라 빠르게 진행되었다.

  • PDF

열처리에 따른 BSCCO 용사피막의 초전도특성 (Superconductor characteristics of BSCCO spray films by Heat treatment)

  • 도형준;박경채
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.282-284
    • /
    • 2007
  • The superconductor characteristics of BSCCO spray films by Heat treatment was studied. $Bi_2Sr_2CaCu_2O_x$(Bi-2212) is high-Tc superconductor(HTS) coatings have been prepared by Heat treatment. Where high current carrying capabilities are required and therefore thick film and bulk material are called for, the Bi2Sr2Ca1Cu2O8-d(Bi-2212)compound has evoleved as one of the most promising. and the Bi-2212 HTS coating layer is synthesized through the peritectic reaction between Sr-Ca-Cu oxide coating layer and Bi-Cu oxide coating layer by partial melting process. The superconducting characteristics depends on the spray distance which was related to the spray particle melt. The Bi-2212 HTS layer consists of the whisker growth and secondary phase in 2212 layer were observed.

  • PDF

원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화 (Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition)

  • 배차헌;정해용
    • 한국주조공학회지
    • /
    • 제17권5호
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF

나노구조 용사코팅층의 형성에 관한 기초적 연구 (Fundamental Study on the Formation of Nanostructured Coating Layer)

  • 김영식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.90-95
    • /
    • 2005
  • The wire-arc process is a low-cost thermal spray method simply utilizes electrical energy to melt the feedstock wire. It is more userful for field applications, especially to coat large surface area. In this paper, a special Fe-based alloy coatings by using the wire-arc process were developed. Nanoscale composite coatings were achieved either during spraying or through a post heat treatment. As-sprayed Fe-based alloy coatings had been an amorphous matrix structure, after heating to $700^{\circ}C$ for 10 minutes a solid state transformation occurred in the some fraction of amorphous matrix which resulted in the formation of nanostructured recrystallized phase. Scanning electron microscopy (SEM) and field emotional scanning electron microscope(FE-SEM) were applied to analyze the microstructure of the coatings. Additionally hardness and bend resistance of the Fe-based alloy coatings were examined, and these results were compared with those of partially stabilized zirconia(PSZ) coatings by using the plasma spray process.

  • PDF

용사법과 레이저 용접을 이용한 복합소재 미세필터 연구 (A study on ceramic and metal composite material joining for micro filter using thermal spray and laser welding)

  • 송인규;최해운;김주한;윤봉한;박중언
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.32-38
    • /
    • 2010
  • Hybrid material(ceramic+metal) processes were developed for micro filter using ceramics coating at metal filter surface by thermal spray method, micro hole drilling at ceramic coated filter surface by femtosecond laser, and fiber laser direct welding of ceramic and metal (SUS304, SM45C) by capillary effect. Thermal spray process was used for ceramic powders and metal filters. The used ceramic powders were $Al_2O_3+40TiO_2$(Metco 131VF) powder of maximum particle size $5{\mu}m$ and ${Al_2O_3}99+$(Metco 54NS) power of maximum particle size 45m. Ceramic coated filters using thermal spray method had a great influence on powder material, particle size and coating thickness but had a fine performance as a micro filter. CW fiber laser was used to drill the top ceramic layer and melt the bottom metal layer for joining applications.

  • PDF

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.