• 제목/요약/키워드: Melt Front

검색결과 36건 처리시간 0.031초

사출성형 해석을 통한 Weldline 및 Flow mark 개선사례 (The Improvement of Weldline and Flow mark Defection by using Injection Molding Analysis)

  • 이영창
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1295-1301
    • /
    • 2013
  • The cause of flow mark defect is known as non-uniform temperature of mold surface when the flow front meets the cold cavity. The exact definition and classification of Flow mark is not clear because the mechanism of flow mark is not figured out till now. Any injection molding analysis software can not predict the flow mark phenomena. To solve weldline and flow mark defects, the gate thickness is reduced to increase the melt front velocity and the melt front velocity of the flow mark area is increased from 82.3mm/s to 104.7mm/s. In addition, the bulk temperature of the flow mark area is increased from $178.3^{\circ}C$to $215.2^{\circ}C$ by adding a cold slug well. The flow mark phenomena can be greatly reduced by increasing the flow front velocity and elevating the bulk temperature.

레이저 가공에 있어서 키홀의 동적거동 (Dynamic Bechavior of the keyhole in Laser Processing)

  • 김종도
    • 해양환경안전학회지
    • /
    • 제3권2호
    • /
    • pp.23-31
    • /
    • 1997
  • The results of high speed photography, acoustic emission detection and plasma UV radiation intensity measurement during CO2 laser welding of stainless steel 304 are presented. Video images with high spatial and temporal resolution allowed to observe the melt dynamics and keyhole evolution. The existence of a high speed melt flow which originated from the part of weld pool and flowed along the sides wall of keyhole was confirmed by the slag motion on the weld pool. the characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal acoustic emission (AE) and light emission (LE) spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. (The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation.) The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

  • PDF

A Study of High Viscosity Melt Front Advancement at the Filling Process of Injection-Compression Mold

  • Park, Gyun-Myoung;Kim, Chung-Kyun
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.333-334
    • /
    • 2002
  • Injection-compression molding parts are many cases with complicated boundary condition which is difficult to analysis of mold characteristics precisely. In this study, the effects of various process parameters such as multi-point gate location, initial charge volume, injection time and pressure have been investigated using finite element method to fomulate the melt front advancement during the mold filling process. A general governing equation for tracking the filling process during injection-compression molding is applied to volume of fluid method. To verify the results of present analysis, they are compared with those of the other paper. The results show a strong effect of processing conditions as a result of variations in the three-dimensional complex geometry model.

  • PDF

Experimental Study and Numerical Modeling of Keyhole Behavior during CO2 Laser Welding

  • Kim, Jong-Do;Oh, Jin-Seok;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.282-292
    • /
    • 2007
  • The present paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurement during $CO_2$ laser welding of 304 stainless steel in different processing conditions. Video images with high spatial and temporal resolution allowed to observe the melt dynamics and keyhole evolution. The existence of keyhole was confirmed by the slag motion on the weld pool. The characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal AE and LE spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation. The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10 mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • 한국결정성장학회지
    • /
    • 제13권1호
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.

미세 구조물의 충전에 관한 실험 및 수치해석 (Experimental & Numerical Result of the filling of Micro Structures in Injection Molding)

  • 이재구;이봉기;권태헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

A Study of Ceramic Injection Molding of Watch Case Composed of $ZrO_2$ Powder

  • Kwak, T.S.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.505-506
    • /
    • 2006
  • This study is focused on the manufacturing technique of powder injection molding of watch case made from zirconia powder. A series of computer simulation processes were applied to the prediction of the flow pattern in the inside of the mould and defects as weld-line. The material properties of melted feedstock, including the PVT graph and thermal viscosity flowage properties were measured to obtain the input data to be used in a computer simulation. Also, a molding experiment was conducted and the results of the experiment showed a good agreement with the simulation results for flow pattern and weld line location. On the other hand, gravity and inertia effects have an influence on the velocity of the melt front because of the high density of ceramic powder particles during powder injection molding in comparison with polymer's injection molding process. In the experiment, the position of the melt front was compared with the upper gate and lower gate positions. The gravity and inertia effect could be confirmed in the experimental results.

  • PDF

AP추진제의 연소면 형성 및 전파 모델링 연구 (A phase transformation model for burning surface in AP/HTPB propellant combustion)

  • 정태용;도영대;유지창;여재익
    • 한국항공우주학회지
    • /
    • 제38권4호
    • /
    • pp.363-368
    • /
    • 2010
  • 고체추진제의 연소가 진행될 때, 고체상에서 액체상으로, 액체상에서 기체상으로의 상변화가 일어난다. 이 때 추진제 표면에서는 액체상, 기체상이 동시에 존재하게 된다. 액체상과 기체상의 중간에서는 액체상과 기체상의 혼합으로 인하여 거품이 형성되는데, 이 구간을 용융층(Melt Layer)이라고 한다. 용융층의 윗부분, 즉 액체상과 기체상 사이에는 연소면(Burning Surface)이 존재한다. 일반적으로 고체추진제가 연소될 때 생성되는 용융층의 두께는 1기압에서 약 1마이크론 정도이다. 본 연구에서는 물리적인 상변화 현상을 상방정식을 이용하여 액체에서 기체로의 상변화 현상을 모사하였다. 이를 통하여 연소면의 두께, 형성과 전파를 모사하였다.

단열층을 이용한 광디스크 기판 성형에 대한 수치 해석 (Modeling of Passive Heating for Replicating Sub-micron Patterns in Optical Disk Substrates)

  • 배재철;김영민;김홍민;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.80-83
    • /
    • 2003
  • Transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer, generated during the polymer filling, deteriorates transcribability because the solidified layer prevents the polymer melt in filling the sub-micro patterns. Therefore, the development of the solidified layer during filling stage of injection molding must be delayed. For this delay, passive heating by insulation layer has been used. In the present study, to examine the development of the solidified layer delayed by passive heating, the flow of polymer melt with passive heating was analyzed. Passive heating markedly delayed the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micro patterns. As a result, we predict that passive heating can improve transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mold and measured the transcribability.

  • PDF

단열층을 이용한 광디스크 기판의 서브 미크론 성형에 대한 수치 해석 (Modeling of Passive Heating for Replicating Sub-micron Patterns in Optical Disk Substrates)

  • 배재철;김영민;김홍민;강신일
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.39-44
    • /
    • 2004
  • Transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer, generated during the polymer filling, deteriorates transcribability because the solidified layer prevents the polymer melt from filling the sub-micro patterns. Therefore, the development of the solidified layer during filling stage of injection molding must be delayed. For this delay, passive heating by insulation layer has been used. In the present study, to examine the development of the solidified layer delayed by passive heating, the flow of polymer melt with passive heating was analyzed. Passive heating markedly delayed the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micro patterns. As a result, we predict that passive heating can improve transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mold and measured the transcribability of an optical disk substrate.