• Title/Summary/Keyword: Melt Crystallization

Search Result 164, Processing Time 0.018 seconds

A Study on the Microstructure and Magnetic Properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 Nanocrystalline Soft Magnetic Alloys with varying P Content (Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 나노결정질 연자성 합금의 P함량에 따른 미세구조 및 자기적 특성 변화 관찰에 관한 연구)

  • Im, Hyun Ah;Bae, Kyoung-Hoon;Nam, Yeong gyun;An, Subong;Yang, Sangsun;Kim, Yong-Jin;Lee, Jung Woo;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2021
  • We investigate the effect of phosphorous content on the microstructure and magnetic properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1-4 at.%) nanocrystalline soft magnetic alloys. The simultaneous addition of Cu and P to nanocrystalline alloys reportedly decreases the nanocrystalline size significantly, to 10-20 nm. In the P-containing nanocrystalline alloy, P atoms are distributed in an amorphous residual matrix, which suppresses grain growth, increases permeability, and decreases coercivity. In this study, nanocrystalline ribbons with a composition of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1-4 at.%) are fabricated by rapid quenching melt-spinning and thermal annealing. It is demonstrated that the addition of a small amount of P to the alloy improves the glass-forming ability and increases the resistance to undesirable Fex(B,P) crystallization. Among the alloys investigated in this work, an Fe83.2Si5B10P1Cu0.8 nanocrystalline ribbon annealed at 460℃ exhibits excellent soft-magnetic properties including low coercivity, low core loss, and high saturation magnetization. The uniform nanocrystallization of the Fe83.2Si5B10P1Cu0.8 alloy is confirmed by high-resolution transmission electron microscopy analysis.

Fabrication and Optical Characterization of Highly Dy3+-ion-incorporated Alumino-borosilicate Glasses for Magneto-optical Applications at 1550 nm (1550 nm 자기광학 응용을 위한 고농도 Dy3+ 이온이 함유된 알루미노보로실리케이트 유리의 제조 및 자기광학 특성 분석)

  • Kadathala Linganna;Yong-Tak Ryu;Young-Ouk Park;Bong-Ahn Yu;Bok Hyeon Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.115-120
    • /
    • 2024
  • Magneto-optical (MO) materials have attracted much attention, since they can be utilized for various optical applications, such as magnetic field sensors, optical current sensors, optical isolators, and optical circulators. In this study, alumino-borosilicate (ABS) glasses with high concentrations of Dy3+ ions were fabricated by a conventional melt-quenching technique, and the dependence of their thermal, optical, and magneto-optical properties on Dy3+ ion concentration was investigated. The MO property of the glasses was investigated by measurement of Faraday rotation at 1550 nm. The Faraday rotation angle increased linearly with the increase of Dy3+ ion concentration in the glasses. A very high Verdet constant of -6.86 rad/(T·m) was obtained for glass with a Dy3+ ion concentration of 30 mol%. In addition, the ABS-Dy glasses showed good thermal stability of greater than 128 ℃ against crystallization, and high optical transmission of 70% in the visible to near-infrared windows of 480-720, 1390-1560, and 1800-2400 nm. Due to the high Verdet constant and good thermal stability, the ABS-Dy glasses in this study could be candidate optical materials for MO device applications at 1550 nm.

Petrological Characteristics of Two-Mica Granites : Examples from Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas (복운모 화강암의 암석화학적 특징 : 청산, 인제-홍천, 영주 및 남원지역의 예)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.210-225
    • /
    • 1997
  • From their general natures of peraluminous, S-type and ilmenite-series granites, two-mica granites in the Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas were originated from crust-derived granitic magma and solidified under reducing condition. Each two-mica granite in Inje-Hongcheon and Namwon districts was differentiated from the the residual magma of porphyric biotite granite and high Ti/Mg biotite granite, respectively. The genetic relationships between two-mica granite and porphyritic biotite granite in Chenongsan district and between two-mica granite and biotite granodiorite in Yeongju district are ambiguous. In Namwon district granitic magmas were water-saturated and possible water solubilities in magmas were more than 5.8wt.%. In Yeongju district two-mica granitic magma was nearly water-saturated and showed possible water solubilities between 2.4~5.8wt.%. Two-mica granitic magmas in Cheongsan and Inje-Hongcheon districts were water-undersaturated. Pressure-dependent minimum melt compositions (0.5~2kb) and petrographic textures of two-mica granites in Inje-Hongcheon and Yeongju districts represent that the granites intruded and solidified at shallow level, whereas those in Cheongsan and Namwon districts exhibit relatively deeper level of granitic intrusion (2-3kb). The intersection of granite-solidus/muscovite stability indicates that magmatic primary muscovite can be crystallized from the water-saturated magma above 1.6kb (ca. 6km), but below the pressure muscovite can be formed by the subsolidus reaction. On the other hand, more pressure would be necessary for the crystallization of primary muscovite from the water-undersaturated magma. This pressure condition can explain the occurrence of primary and secondary muscovites from the two-mica granites in the areas considered. The experimental muscovite stability must be cautious of the application to examine the origin of muscovite. The muscovite stability can move toward high temperature field with adding of Ti, Fe and Mg components to the octahedral site of pure muscovite end member.

  • PDF

Geochemistry of tourmalines in the Ilgwang Cu-W breccia-pipe deposit, Southeastern Gyeongsang Basin (경상남도 일광의 각력파이프형 구리(Cu)광상에서 산출되는 전기석의 지구화학)

  • 양경희;장주연
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.259-270
    • /
    • 2002
  • A small granodiorite-quartz monzonitic stock containing sericitic and propylitic alteration assemblages hosts a Cu-W breccia-pipe deposit in the southeastern Cyeongsang basin. The mineralized breccia-pipe contains angular to subangular brecciated fragments of granitic rocks showing clast-supported textures. An assemblage of quartz, tourmalines, sulfide minerals (mainly chalcopyrite, arsenopyrite and pyrrhotite) and calcite was precipitated as a hydrothermal cement between the brecciated fragments. A tourmaline aureole surrounds the breccia pipe. Extensive tourmalinization of the granitic rocks near and within the pipe and no tourmalinization in the sedimentary and volcanic rocks. The tourmalines are marked by Fe-rich, black charcoal-like schorl (80 mol% schorl relative) nearer the schorl-dravite solid solution. The chemical changes in the hydrothermal fluid are reflected by variations in compositional Boning from cores to rims. They generally contain cores with low values of Fe/(Fe+Mg) and high values of Na/(Na+ca) relative to rims. This is because of an increase Fe and Ca contents toward rims. The main trend of these variations is a combination of the exchange vectors Ca(Fe, Mg) $(NaAl)_{- }$ $_1$ and $Fe^{3}^{+}$ $Al_{[-10]}$ $_1$ It is thought that boiling causes the loss of $H_2$ into the vapor phase resulting in the oxidation of Fe in the aqueous phase. pH of the melt would be one of important controlling factors for the tourmaline stability. The tourmalines could be precipitated when the system evolved to the acidic hydrothermal regime as most hydrothermal brines and acidic gases exsolved from the magma. The Ilgwang tourmaline crystallization is products of hypogene orthomagmatic hydrothermal processes that were strongly pipe-controlled.