음악은 서로 다른 높이와 길이를 갖는 음표들을 주어진 박자 안에서 리듬성을 갖도록 나열한 패턴이기 때문에 음악의 선율정보는 시간의 흐름에 따라 정보 값을 갖는 시계열 데이터로 변환할 수 있다 따라서 본 연구에서는 음악의 특성을 유지하도록 선율정보를 정규화와 보정과정을 거쳐 시계열 데이터로 변환하고 유클리드 거리함수를 이용하여 선율정보간의 유사도를 계산하며, 유사성을 갖는 선율들을 클러스터링하여 각 클러스터의 대표성을 갖는 선율을 주제선율로서 추출한다. 그리고 추출된 주제선율로 다차원색인 기법인 M-tree를 이용하여 주제선율색인을 구성한다. 사용자 질의에 대한 검색과정에서도 색인 구성단계와 같은 과정으로 사용자 질의를 시계열 데이터로 변환하여 검색을 한다. 또한, 본 연구에서는 주제선율색인을 이용하여 내용기반 음악 검색을 실시하는 프로토타입 시스템을 개발하여 제안된 주제선율색인 구성기법의 실효성을 시험하였다. 실험결과에 따르면, 주제선율색인을 이용하면 원하는 음악 정보를 적은 공간을 사용하여 빠르고 정확하게 검색할 수 있음을 알 수 있다.
This paper proposes an automatic composition method using the training capability of artificial neural networks and chord progression rules that are widely used by human composers. After training a given song, the new melody is generated by the trained artificial neural networks through applying a different initial melody to the neural networks. The generated melody should be modified to fit the rhythm and chord progression rules for generating natural melody. In order to achieve this object, we devised a post-processing method such as chord candidate generation, chord progression, and melody correction. From some tests we could find that the melody after the post-processing was very improved from the melody generated by artificial neural networks. This enables our composition system to generate a melody which is similar to those generated by human composers.
본 논문에서는 대중음악 코드진행 과정에 있어서 패턴 분석을 이용하여 멜로디를 추가하는 방법을 소개한다. 먼저, 멜로디를 신경망의 입력으로 사용되는 비트패턴으로 변환하는 방법을 기술한다. 멜로디 추가 방법은 역전파 신경망 학습을 통해 멜로디 작곡 패턴을 학습시키고 학습 된 데이터를 바탕으로 멜로디를 생성하도록 설계하였다. 실험결과 신경망 학습을 이용한 컴퓨터의 작곡 가능성을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권12호
/
pp.6038-6053
/
2017
In this study, we propose an automatic melody extraction algorithm using deep learning. In this algorithm, feature images, generated using the energy of frequency band, are extracted from polyphonic audio files and a deep learning technique, a convolutional neural network (CNN), is applied on the feature images. In the training data, a short frame of polyphonic music is labeled as a musical note and a classifier based on CNN is learned in order to determine a pitch value of a short frame of audio signal. We want to build a novel structure of melody extraction, thus the proposed algorithm has a simple structure and instead of using various signal processing techniques for melody extraction, we use only a CNN to find a melody from a polyphonic audio. Despite of simple structure, the promising results are obtained in the experiments. Compared with state-of-the-art algorithms, the proposed algorithm did not give the best result, but comparable results were obtained and we believe they could be improved with the appropriate training data. In this paper, melody extraction and the proposed algorithm are introduced first, and the proposed algorithm is then further explained in detail. Finally, we present our experiment and the comparison of results follows.
최근 내용 기반 음악 정보 검색 시스템에서는 사용자의 응답 시간을 단축시키기 위해 음악의 대표성을 갖는 선율을 추출하여 색인하고, 검색시 이를 이용한다 음악에서 대표성을 갖는 선율은 해당 음악을 대표하여 사용자가 기억하고 있으며, 사용자가 질의 선율로 사용할 가능성이 높아야 한다. 그러나, 기존의 내용 기반 음악 정보 검색 시스템에서는 음악 구성 형식을 고려하지 않기 때문에 음악 구성 형식에 따라 반복, 대조되는 선율들을 해당 음악을 대표하는 선율로 추출하지 못한다. 본 논문에서는 해당 음악을 대표하는 선율을 추출하기 위하여 한 음악에서 음악 구성 형식을 반영하여 일정한 유사도내에서 반복되는 선율들을 해당 음악의 반복 주제 선율로 추출한다. 또한, 사용자가 일반적으로 인지하는 첫 동기 선율과 절정 선율에 해당되는 선율들을 인식하여 대표 선율에 추가한다. 본 논문에서 제안된 시스템의 성능을 평가하기 위해 프로토타입을 구현하고, 다른 선을 색인과 비교 실험하였다. 실험 결과, 대표 선율 색인은 전체 동기를 색인한 경우에 비해 34%의 적은 저장 공간으로 색인을 구성하여 사용자의 응답 시간을 단축시켰다. 또한, 반복 주제 선율만으로 색인한 경우에 비해 사용자가 질의 가능성이 높은 첫 동기 선율, 절정 선율 등을 대표 선율로 색인하기 때문에 추가적으로 20의 색인 공간이 필요하였으나, 다양한 사용자의 질의 선율에 대해 검색의 정확성을 증진할 수 있음을 보였다.
최근 내용 기반 음악 검색 시스템에서는 사용자의 응답 시간을 단축시키기 위해 음악의 대표성을 갖는 선율을 추출하여 색인하고, 검색 시 이를 사용한다. 기존 연구에서는 미디(midi) 데이타를 이용하여 대표 선율을 추출하는 방법이 제안되었으나, 미디 데이타에 한정되는 단점이 있었다. 따라서 본 논문에서는 디지털 신호처리를 이용하여 모든 오디오 파일 포맷에 적용 가능한 대표 선율 검색을 제안한다. 대표 선율 검색을 위해 FFT(Fast Fourier Transform)을 이용하여 박자와 마디를 찾고 각 마디들의 PCM 데이타로부터 높은 수치가 나타나는 빈도를 측정한다. 이때 높은 수치들이 가장 많이 뭉쳐 있는 영역에서 여덟 마디 간격이 오디오 데이타의 대표 선율 영역이다. 제안 방법의 유효성을 검증하기 위한 실험으로 총 1000곡을 선택하여 대표 선율을 추출하였고, 그 결과 템포를 찾아낸 737곡 중 79.5%의 정확성을 보였다.
We present a speech processing strategy incorporating instantaneous frequency (IF) encoding for the enhancement of melody recognition performance of cochlear implants. For the IF extraction from incoming sound, we propose the use of a Teager energy operator (TEO), which is advantageous for its lower computational load. From time-frequency analysis, we verified that the TEO-based method provides proper IF encoding of input sound, which is crucial for melody recognition. Similar benefit could be obtained also from the use of a Hilbert transform (HT), but much higher computational cost was required. The melody recognition performance of the proposed speech processing strategy was compared with those of a conventional strategy using envelope extraction, and the HT-based IF encoding. Hearing tests on normal subjects were performed using acoustic simulation and a musical contour identification task. Insignificant difference in melody recognition performance was observed between the TEO-based and HT-based IF encodings, and both were superior to the conventional strategy. However, the TEO-based strategy was advantageous considering that it was approximately 35% faster than the HT-based strategy.
유사 멜로디 검색은 질의 멜로디와 유사한 멜로디들을 음악 데이터베이스로부터 찾는 연산이다. 본 논문에서는 유사 멜로디 검색을 기반으로 하는 표절 감지 시스템 개발에 관하여 논의한다. 먼저, 정합 및 이동 변환을 지원하는 새로운 유사 모델을 제안한다. 또한, 각 멜로디 의 특징들을 인덱싱 하는 방법과 인덱스를 기반으로 표절 감지를 처리하는 방법을 제시한다 제안된 표절 감지 시스템을 이용하여 작곡가는 자신의 멜로디와 유사한 멜로디를 가지 는 곡들을 음악 데이터베이스에서 효과적으로 검색할 수 있다. 실험 을 통한 성능평가를 통하여 제안된 기법의 우수성을 규명한다. 실험 결과에 의하면, 제안된 기법은 순차 검색을 기반으로 하는 방법과 비교하여 약 31배까지의 성능 개선 효과를 보였다.
The present study attempted to modify the conventional Melodic Intonation Therapy (MIT) in three aspects: number of syllables of adjacent target utterances (ATU), melody patterns of ATU, and initial listening of melody and intoned speech with the eyes closed. The modified Melodic Intonation Therapy (MMIT) was applied to two severe Korean aphasics. The patients exhibited a severely nonfluent aphasia resulting from a left CVA(Cerebrovascular Accident). The purpose of the modification was to avoid perseveration and improve reflective listening skills. First, the treatment program avoided ATU with the same number of syllables. Second, four different patterns of melody were developed: rising type, falling type, V-type, and inverted V-type. One type of prosodic pattern was preceded and followed by another type of melody. These two variations were to decrease perseverative behaviors. Finally, the patients kept their eyes closed when the clinician played and hummed a target melody at the initial stage of the program in order to improve reflective listening skills. A single-subject alternating treatment design was used. The effects of MMIT were compared to the conventional MIT. Differing the number of syllables and the type of melodic patterns decreased perseverative behaviors and produced more correct names. The initial listening of the target melody with the patients' eyes closed seemed to increase their attentiveness and result in a more fluent production of target utterances. Probable reasons for the effectiveness of MMIT were discussed.
본 논문에서는 음악 데이터베이스의 멜로디와 사용자가 기술한 멜로디의 기하학적 구조를 비교하는 음악 검색 시스템을 제안하고 있다. 시스템은 멜로디의 구조적이고 상황적인 특징들을 분석하여 쿼리 멜로디와 데이터베이스의 멜로디가 일치성을 찾고자 한다. 검색 방법은 사전 처리 단계와 인식 단계로 이루어진 기하하적 해싱 알고리즘에 기반을 두고 있다. 사전 처리 단계 동안 구조적 특징을 찾기 위해서 음악의 멜로디를 여러 개의 프래그먼트(fragment)들로 분할하고 그 프래그먼트의 각 음의 높이 및 길이를 분석한다. 상황적 특징을 찾기 위해서 각 프래그먼트의 중심 화음을 찾는다. 인식 단계 동안 사용자가 입력한 쿼리 멜로디를 여러 개의 프래그먼트들로 분할하고 구조적이고 상황적 특성이 유사한 모든 프래그먼트들을 데이터베이스에서 검색한다. 투표는 각 프래그먼트에 대해 이루어지고 총 득표수가 최대인 음악이 쿼리 멜로디와 일치하는 멜로디를 갖는 음악이 된다. 이러한 접근 방법을 이용하여, 음악 데이터베이스에서 유사한 멜로디를 빠르게 찾을 수 있다. 또한 이 방법은 표절 음악을 감지하는데 적용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.