• Title/Summary/Keyword: Melissa officinalis L. leaf

Search Result 1, Processing Time 0.014 seconds

Effect of Melissa officinalis L. leaf extract on lipid accumulation by modulating specific adipogenic gene transcription factors in 3T3-L1 adipocytes

  • Lee, Hyun Jeong;Lim, Jonghak;Peak, Junoh;Ki, Mun-sang;Lee, Sang-bong;Choe, Gayong;Jung, Jaeyun;Jung, Hansang;Jeon, Suwon;Park, Tae-Sik;Shim, Soon-Mi
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.169-174
    • /
    • 2020
  • The objective of this study was to investigate the effects of a hypodermic injectable solution comprised of an LPM LB meso solution containing Melissa officinalis L. leaf extract (LPM) on the lipogenesis in the 3T3-L1 cells line. The lipid accumulation measured by oil red o staining in the 3T3-L1 adipocytes treated with LPM, which was reduced in a dose dependent manner and showed 91.7 to 62.9% compared to control group. Its effectiveness with a 50% solution was significantly higher than the hydroxycitric acid (positive control) treatment without showing cell cytotoxicity. In a quantitative real-time PCR, it was demonstrated that the LPM treatment appeared to upregulate the mRNA expression of the adipogenesis-related genes, which included the peroxisome proliferator-activated receptor gamma (50% concentration) while down-regulating the CCAAT-enhancer binding protein alpha (50% concentration) and the sterol regulatory element-binding protein 1c (10, 25, and 50% concentrations). The results from the current study suggest that the LPM could be useful biomaterials that can inhibit obesity in the 3T3-L1 cells, which could possibly be by regulating the specific adipogenic gene transcription factors.