• Title/Summary/Keyword: Melamine-formaldehyde resin

Search Result 47, Processing Time 0.023 seconds

Thermal Performance of the Microencapsulated PCM

  • Lee, Hyo-Jin;Lee, Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • Microencapsulated pcm (MPCM) particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane ($C_14$$H_30$, $T_m$=5.5$^{\circ}C$) is capsulated in the core, coated with the melamine for their surface. The size of particles is well-controlled under 10$\mu$m in the process of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentractions of slurries are prepared for 20 wt%, 30 wt%, and 40 wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose flow rates are varied by 125 cc/min, 250 cc/min, and 500 cc/min. However, MPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MPCM particles restrict their heat transfer in terms of natural convection and conduction to them.

Experimental Study on the Microencapsulated PCM as a Thermal Storage Medium (미립잠열재를 이용한 축열 특성에 관한 실험적 연구)

  • 이효진;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • Microencapsulated PCM particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane(C$_14H_30, T_m=5.5^{\circ}C$) is capsulated in the core with the melamine of its surface. The size of particles is well-controlled under 10${\mu}{\textrm}{m}$ in the way of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentrations of slurries are prepared for 20wt%, 30wt%, and 40wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose tank whose flow rates are varied by 125cc/min, 250cc/min, and 500cc/min. However, MicroPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MicroPCM particles control its heat transfer in terms of natural convection and conducting to them.

  • PDF

The Effects of PCM Capsule Sizes on the Properties of Acrylic Coatings (PCM 캡슐의 크기가 아크릴 코팅의 물성에 미치는 영향)

  • Hur, Soon-Ryoung;Lee, Sung-Goo;Choi, Kil-Yeong;Lee, Jae Heung;Hong, Geun-Hye;Kim, Hyung-Joong
    • Journal of Adhesion and Interface
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 2005
  • The capsules were prepared from a phase change material (PCM) of octadecane as a core material and melamine formaldehyde resin as a shell material. The PCM capsule size was varied in the range of $3{\sim}25{\mu}m$. The core contents and sizes of the PCM capsule, were determined by DSC and SEM, respectively. An acrylic coating material which contains butyl acrylate (BA), methyl metacrylate (MMA) and acrylic acid (AA) were synthesized by emulsion polymerization. The films were prepared from the acrylic emulsion and PCM capsules which have various capsule sizes. From the results of SEM experiment, it was observed that the PCM capsules were well dispersed inside the film and the surface of the film became less rough when the PCM capsule size was small. The swelling ratio of the films were not significantly affected by the PCM capsule size. However, the tensile strength and elongation of the films were greatly decreased with increasing the PCM capsule size.

  • PDF

Study on Self-Healing Asphalt Containing Microcapsule (마이크로캡슐이 내재된 자기치유 아스팔트에 관한 연구)

  • Kwon, Young-Jin;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.232-240
    • /
    • 2013
  • Microcapsules having healing agent were prepared in which 2,6-dimethylphenol (DMP) as a healing agent forms the core and melamine/formaldehyde resin forms the shell. Microcapsule-contained asphalts showed better mechanical properties than non-contained ones. And as the rest time passed the impact strength of microcapsule-contained asphalt was getting higher than that of asphalt without the microcapsule. As the rest time of 15 days passed, the original strength was restored. This tells that microcapsule-contained asphalt had the ability of self-healing. X-ray photos proved that DMP on asphalt fracture surface, which were burst out of the microcapsules when cracks occurred on asphalt, were polymerized to polyphenyleneoxide and this PPO covered the crack and healed the damage.

Viscoelastic Properties of MF/PVAc Hybrid Resins as Adhesive for Engineered Flooring by Dynamic Mechanical Thermal Analysis

  • Kim, Sumin;Kim, Hyun-Joong;Yang, Han-Seung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2006
  • The viscoelastic properties of blends of melamine-formaldehyde (MF) resin and poly(vinyl acetate) (PVAc) for engineered flooring used on the Korean traditional ONDOL house floor heating system were investigated by dynamic mechanical thermal analysis (DMTA). Because MF resin is a thermosetting adhesive, the effect of MF rein was shown across all thermal behaviors. The addition of PVAc reduced the curing temperature. The DMTA thermogram of MF resin showed that the storage modulus (E') increased as the temperature was further increased as a result of the cross-linking induced by the curing reaction of the resin. The storage modulus (E') of MF resin increased both as a function of increasing temperature and with increasing heating rate. From isothermal DMTA results, peak $T_{tan{\delta}}$ values, maximum value of loss modulus (E") and the rigidities (${\Delta}E$) of MF/PVAc blends at room temperature as a function of open time, peak $T_{tan{\delta}}$ and maximum loss modulus (E") values were found to increase with blend MF content. Moreover, the rigidities of the 70:30 and 50:50 MF/PVAc blends were higher than those of the other blends, especially of 100% PVAc or MF. We concluded that blends the MF/PVAc blend ratios correlate during the adhesion process.

Porosity and Abrasion Resistance of Concrete Coated by Surface enhanced type Water Repellent (표면강화형흡수방지재 적용 콘크리트의 기공률 및 내마모성 특성)

  • Park, Myungju;Noh, Jaeho;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.31-36
    • /
    • 2019
  • Concrete is a material generally used to build structures and it is exposed to various environment conditions. In particular, a medium such as water lets noxious factors flow into concrete, causing a lot of damage. Therefore, different kinds of materials are being developed to increase the durability of concrete. Among such materials, silane and siloxane compound are known to have a high utilization as an absorption inhibitor. However, if aged or deteriorated reinforced concrete is treated with those compounds, they easily come off the concrete and lose their function since the basic material is weak. This study conducted an experiment to provide concrete with both an absorption-inhibiting effect and surface strengthening by using melamine-formaldehyde resins that are surface-treated with siloxane compound. In addition, a study on the porosity and surface hardness characteristics of a concrete was conducted to check the absorption-inhibiting effect and surface strengthening.

A Study on the Durable Press Finish by Wet-Fixation Processes for Rayon Fabrics (I) - One Bath and Two Bath Processes - (레이온 직물의 Wet-Fixation에 의한 DP가공에 관한 연구(I) - 일욕법과 이욕법의 비교 -)

  • Hu Yoon Sook;Kim Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.242-251
    • /
    • 1989
  • The purpose of this study was to investigate the changes in easy-care and strength properties of the wet fixation processed viscose rayon fabrics. Rayon fabrics were treated with mixed resins of melamine formaldehyde (MF) and DMDHEU by one bath and two bath wet fixation processes. The MF/DMDHEU mixed resin concentrations were 50/100, 50/150, 100/100, 100/150 and 150/100(g/1). Magnasium chloride was used as a catalyst. Treated fabrics were evaluated by nitrogen content, DP rating, wrinkle recovery angle, breaking strength, tearing strength and abrasion resistance. The properties were compared to the fabrics treated by conventional Pad-Dry-Cure (PDC) method. Wet fixation processed fabrics showed DP ratings of higher than 3 and higher than 275 degrees of wrinkle recovery angles in all the mixed resin concentrations. Wet fixation processed fabrics showed increase in breaking strength and tearing strength but decrease in abrasion resistance. However, the decrease in abrasion resistance was much less than the conventional PDC treated fabrics. The one bath wet fixation processed fabrics showed better physical properties than the two bath processed fabrics in general. The optimum treatment condition was the mixed resin concentration of MF/DMDHEU, 100/100 g/l in one bath wet fixation process.

  • PDF

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

Physical and Mechanical Properties of Three-layer Particleboards Bonded With UF and UMF Adhesives

  • Iswanto, Apri Heri;Simarmata, Janrahman;Fatriasari, Widya;Azhar, Irawati;Sucipto, Tito;Hartono, Rudi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.787-796
    • /
    • 2017
  • A low dimensional stability and poor bending strength properties were main problems in particleboard manufacturing. The objective of this research was to evaluate the effect of mixed wood species and urea-formaldehyde (UF) or urea-melamine-formaldehyde (UMF) resins on the physical and mechanical properties of three-layer particleboards. The ratio of face/core/back layer was 1 : 2 : 1. The resin content of 12% for both UF resins and UMF resins (UF/MF = 70/30% w/w) was used. The results of this study showed that the utilization of S.mahagony shaving using both UF and UMF resins caused a decrease in the thickness swelling and water absorption of the boards. Thickness swellings of particleboard made of Sengon/Sengon/Sengon (SSS), Mahogany/Mahogany/Mahogany (MMM), Sengon/Mahogany/Sengon (SMS), and Mahogany/Sengon/Mahogany (MSM) were in the range of 23%, 12~16%, 14~16%, and 13~21%, respectively. The board bonded with UMF resin demonstrated better dimensional stability than that bonded with UF resin alone. Modulus of elasticity (MOE) and modulus of rupture (MOR) of particleboards made of S. mahagony shaving in the surface layer in both MMM and MSM boards were better than those of the SSS and SMS. MOE of MMM and MSM board was in the ranges of 24,000 to $26,000kg.cm^{-2}$ and 18,000 to $21,000kg.cm^{-2}$ respectively. Meanwhile, the MOR of board was in the ranges of 200 to $240kg.cm^{-2}$ and 190 to $228kg.cm^{-2}$, respectively.

The study about the property of flame retardant of Red Phosphorus (홍인의 방염성에 관한연구)

  • Han, Yeon-Sun;Gu, Gang
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.31-33
    • /
    • 2008
  • The study related that Red Phosphorus is surface coated by Al(OH)$_3$ using the proportion 1:1, 1:3, 1:5 respectively, and then take the coated red phosphorus as the core material, at the same time, use Melamine-Formaldehyde resin as the capsule materials for microcapsule processing. According to the TG analysis, the coated red phosphorus with the proportion 1:3 has the tiptop temperature of thermal decomposition, it reaches 376.20^{\circ}C$$. The same to the ratio of burning incomplete carbon it reaches 26.5%. The lowest moisture absorption ratio of the red phosphorus that used coated red phosphorus for microcapsule processing can reach 0.5% with the condition that thermal decomposition temperature decline 3.6%.

  • PDF