• Title/Summary/Keyword: Medium carbon steel

Search Result 113, Processing Time 0.026 seconds

THE WELDABILITY AND MECHANICAL BEHAVIOR OF MEDIUM CARBON STEEL IN CW Nd:YAG LASER WELDING

  • Bang, Han-Sur;Kim, Young-Pyo;Seiji Katayama;Chang, Woong-Seong;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.626-631
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. ill general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAG laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

The Weldability and Mechanical Behavior of Medium Carbon Steel in CW Nd:YAG Laser Welding

  • Bang, H.S.;Kim, Y.P.;Katayama, S.;Chang, W.S.;Lee, C.W.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. In general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAC laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

A Study on the Weldability of S45C Medium Carbon Steel for Machine Structural Use by Nd:YAG Laser (S45C 기계구조용 중탄소강의 Nd:YAG Laser용접성에 관한 연구)

  • 방한서;김영표;일본명
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.134-139
    • /
    • 2001
  • This paper describes the weldability of JIS S45C medium carbon steel (same material with KS SM45C and SAE 1045) for machine structural use by Nd:YAG laser. This material have a limitation to the industrial application in spite of good mechanical characteristics. This is due to its difficult welding work from high carbon contents. We therefore have investigated laser weldability of this material to extend the application of medium carbon steel. The results of this study provide application possibility of Nd:YAG laser welding for medium carbon steel.

  • PDF

Turning and Metalic Characterization for CAM Shaft Materials of Diessel Engine (디젤 엔진용 캠축 소재의 금속적 특성 및 선삭 가공 특성에 관한 연구)

  • Chae, W.S.;Kim, K.W.;Kim, D.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper, We have studied internal quality incluiding chemical compositions, microscopic structure and nonmetalic inclusion of test material. We have analyzed dynamic characteristics of cutting resistence and compared chip treatment of the test material. In analyzing internal quality, all of the test material have typical ferrite+pearlite structure. But, nonmetallic inclusion has oxide and sulfide inclusion has oxide and sulfide inclusion in medium carbon steel, mainly sulfide inclusion is existed in S-free cutting steel. In Ca+S-free cutting steel, calcium aluminate and sulfide complex inclusion, had low-melting point, as deformation of sulfide and oxide inclusion is existed. Machining characteristics, cutting resistence is maximum in medium carbon steel. Chip treatement are excellent in S-free cutting steel, similar to the Ca+S free cutting steel and medium carbon steel.

  • PDF

Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.184-199
    • /
    • 2022
  • Steel was exposed in an atmospheric environment, and atmospheric environmental factors that include chloride, humidity, SO2, NO2 etc. induced the corrosion of steel. Corrosivity categories classified by SO2 and chloride deposition rate were low, but those classified by TOW were high in the Korean Peninsula, and on these environmental categories, the corrosivity of atmospheres classified by corrosion rate in carbon steel was low medium, C2-C3, and medium, C3 for zinc, copper, and aluminum. This work performed the outdoor exposure test for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of carbon steel. The atmospheric corrosion behavior of carbon steel is discussed based on the various corrosion factors. When the corrosion product forms on carbon steel by atmospheric corrosion, cracks may also be formed, and through these cracks, the environmental factors can penetrate into the interior of the product, detach some of the corrosion products and finally corrode locally. Thus, the maximum corrosion rate was about 7.3 times greater than the average corrosion rate. The color difference and glossiness of carbon steel by the 10 year-outdoor exposure tests are discussed based on the corrosion rate and the environmental factors.

Degradation of Carbon Steel Tube after Long Time Exposure at Petrochemical Plant (석유화확 Plant에서 장시간 사용된 튜브형태 탄소강의 열화현상)

  • Baik, Nam Ik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.16-20
    • /
    • 2000
  • There have been little reports on the degradation of medium-carbon steel tubes served at high temperature for a long period. The purpose of this research was to provide the information of the proper replacement span of the tubes with the new ones. We investigated the medium-carbon steel tubes which were used at petrochemical plant for about 50,000 hrs to examine their mechanical properties and microstructures. Experimental results showed that the tubes satisfied the specification of ASTM despite such a long period of service, but mechanical properties, especially charpy impact values, were reduced. It concludes that the tubes on service at the plants needs a periodical inspection.

  • PDF

Evaluation of Fatigue Strength and Characteristics of Fatigue Crack Closure in SM35C Steel (중탄소강의 피로크랙 개폐구의 특성 및 피로강도의 평가)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • It is not clearly known how surface defects or inclusions of a medium carbon steel affect a fatigue strength. In this study, we used SM35C specimens with spheroidized cementite structure to eliminate dependence of micro structure of fatigue crack. The investigation was carried out by behavior of crack closure at non-propagation crack and effect of the fatigue limit according to the artificial defects size. Experimental findings are obtained as follows : (1) Fatigue crack initiation point of medium carbon steel with spheroidized cementite structure is at the surface defects. (2) Non-propagating crack length of smooth specimen is equal to the critical size of defect. (3) Considering the opening and closure behavior of fatigue crack, the defect shape results in various crack opening displacement, while it does not affects the fatigue limit level of medium carbon steel with spheroidized cementite structure. (4) The critical length of the non-propagation crack of smooth specimen is the same as critical size of defect in transient area which determines threshold condition in steel with spheroidized cementite structure.

  • PDF

Effect of the Arc Furnace Manufacturing Process, Blast Furnace Manufacturing Process, and Carbon Content on the High-temperature Oxidation of Hot-rolled Steel between 650 and 900℃ (열간 압연강의 600~900℃에서의 고온산화에 미치는 전기로제조법, 고로제조법 및 탄소량의 영향)

  • Kim, Min Jung;Lee, Dong Bok;Baek, Seon-Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.907-913
    • /
    • 2010
  • Hot-rolled steel plates of SPHC and SS400 were oxidized at 600, 750 and $900^{\circ}C$ for 2 hr in air. With an increase in the oxidation temperature, their oxidation rates increased, and this was accompanied by the formation of pores and cracks in the thickened oxide scales, which were non-adherent. SPHC steels manufactured by either an arc furnace or a blast furnace displayed similar oxidation rates, indicating that their oxidation rates were insensitive to the manufacturing process. Medium-carbon SS400 steel displayed somewhat faster oxidation rates than low-carbon SS400 steel, indicating that the carbon content did not significantly influence the oxidation rates.

A Study on the Fatigue Crack Propagation of Partly Heat Treated Medium Carbon Alloy Steel (부분 열처리한 기계 구조용 합금강의 피로균열 전파에 관한 연구)

  • 이억섭;김선용
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.3-8
    • /
    • 1997
  • It is well known that mechanisms of fracture and fatigue crack propagation depend upon various characteristics such as environmental condition, crack geometry, heat treatment and mechanical properties. It seems to be important for the detailed evaluation of structural components which contain flaws. In this paper, it is studied that the fatigue crack propagation of partly heat treated medium carbon alloy steel(SCM440) by high frequency heat treatment.

  • PDF

A Study on the Fatigue Crack Propagation of Partly Heat Treated Medium Carbon Steel (부분 열처리한 기계 구조용 탄소강의 피로균열 전파에 관한 연구)

  • 김상철;김선용
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 1993
  • It is well known that mechanisms of fracture and fatigue crack propagation depend upon various characteristics such as environmental condition. crack geometry. heat treatment and mechanical properties. It seems to be important for the detailed evaluation of structural integrity to investigate the effects of the above factors on the behavior of structural components which contain flaws. In this paper. it is studied that the fatigue crack propagation of partly heat treated medium carbon steel (SM45C) by high frequency heat treatment.

  • PDF