• Title/Summary/Keyword: Medium Access Delay

Search Result 171, Processing Time 0.021 seconds

Performance Evaluation of OFDM-based IEEE 802.lla MAC Protocol Under Indoor Wireless Channel

  • Kim, Kanghee;Seokjo Shin;Kim, Kiseon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.739-742
    • /
    • 2000
  • In this paper, we evaluate the throughput and delay performance of a wireless Local Area Network(WLAN) employing the OFDM-based IEEE 802.lla Medium Access Control(MAC) protocol by compute. simulations under wireless indoor. channel. Packet Error Rate(PER) is also investigated for the various Eb/No. It is shown that, with soft-decision Viterbi decoder, throughput and delay performance are close to those of error-free channel at Eb/No above 8dB and PER is about 2${\times}$10$\^$-5/ at Eb/No=10dB.

  • PDF

Efficient Message Scheduling for WDM Optical Networks with Minimizing Flow Time

  • Huang, Xiaohong;Ma, Maode
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.147-155
    • /
    • 2004
  • In this paper, we propose an efficient sequencing technique, namely minimum Row time scheduling (MFTS), to manage variable-Iength message transmissions for single-hop passive starcoupled WDM optical networks. By considering not only the message length but also the state of the receivers and the tuning latency, the proposed protocol can reduce the average delay of the network greatly. This paper also introduces a new channel assignment technique latency minimizing scheduling (LMS), which aims to reduce the scheduling latency. We evaluate the proposed algorithm, using extensive discrete-event simulations, by comparing its performance with shortest job first (SJF) algorithm. We find that significant improvement in average delay could be achieved by MFTS algorithm. By combining the proposed message sequencing technique with the channel selection technique, the performance of the optical network could be further improved.

CCDC: A Congestion Control Technique for Duty Cycling WSN MAC Protocols

  • Jang, Beakcheol;Yoon, Wonyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3809-3822
    • /
    • 2017
  • Wireless Sensor Networks hold the limelight because of significant potential for distributed sensing of large geographical areas. The radio duty cycling mechanism that turns off the radio periodically is necessary for the energy conservation, but it deteriorates the network congestion when the traffic load is high, which increases the packet loss and the delay too. Although many papers for WSNs have tried to mitigate network congestion, none of them has mentioned the congestion problem caused by the radio duty cycling of MAC protocols. In this paper, we present a simple and efficient congestion control technique that operates on the radio duty cycling MAC protocol. It detects the congestion by checking the current queue size. If it detects the congestion, it extends the network capacity by adding supplementary wakeup times. Simulation results show that our proposed scheme highly reduces the packet loss and the delay.

Design of a NeuroFuzzy Controller for the Integrated System of Voice and Data Over Wireless Medium Access Control Protocol (무선 매체 접근 제어 프로토콜 상에서의 음성/데이타 통합 시스템을 위한 뉴로 퍼지 제어기 설계)

  • Choi, Won-Seock;Kim, Eung-Ju;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1990-1992
    • /
    • 2001
  • In this paper, a NeuroFuzzy controller (NFC) with enhanced packet reservation multiple access (PRMA) protocol for QoS-guaranteed multimedia communication systems is proposed. The enhanced PRMA protocol adopts mini-slot technique for reducing contention cost, and these minislot are futher partitioned into multiple MAC regions for access requests coming from users with their respective QoS (quality-of-service) requirements. And NFC is designed to properly determine the MAC regions and access probability for enhancing the PRMA efficiency under QoS constraint. It mainly contains voice traffic estimator including the slot information estimator with recurrent neural networks (RNNs) using real-time recurrent learning (RTRL), and fuzzy logic controller with Mandani- and Sugeno-type of fuzzy rules. Simulation results show that the enhanced PRMA protocol with NFC can guarantee QoS requirements for all traffic loads and further achieves higher system utilization and less non real-time packet delay, compared to previously studied PRMA, IPRMA, SIR, HAR, and F2RAC.

  • PDF

Performance Evaluation of a New Cooperative MAC Protocol with a Helper Node Selection Scheme in Ad Hoc Networks

  • Jang, Jaeshin
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.199-207
    • /
    • 2014
  • A new cooperative MAC protocol called the busy tone cooperative medium access control (BT-COMAC) protocol is proposed to overcome the drawbacks and maximize the advantages of existing schemes. This scheme uses a new metric called decibel power to decide an appropriate helper node. Using received power strength is more efficient in selecting an appropriate helper node, especially in a densely populated network, than the effective transmission rates used in conventional schemes. All communication nodes in a communication service area are assumed to move independently. Two performance metrics are used: System throughput and channel access delay. A performance evaluation of the BT-COMAC protocol is conducted using a computer simulation over a slow fading wireless channel, and its performance results are compared with those of four existing schemes. The numerical results show that the BT-COMAC protocol improves the system throughput by approximately 15% as compared to the best existing scheme.

Coverage Control for Fast Consensus in Distributed Wireless Networks (분산 무선 네트워크에서 빠른 컨센서스를 위한 커버리지 제어)

  • Choi, Hyun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.323-325
    • /
    • 2014
  • The consensus algorithm has a faster convergence speed as the number of cooperating neighbors increases, but the information sharing delay in the wireless network increases due to access collisions as the number of cooperating neighbors increases. Therefore, there exists a tradeoff between these two performances according to node's coverage. In this paper, we present a method of coverage control that minimizes consensus time according to network scale.

Adaptive Cross-Layer Packet Scheduling Method for Multimedia Services in Wireless Personal Area Networks

  • Kim Sung-Won;Kim Byung-Seo
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.297-305
    • /
    • 2006
  • High-rate wireless personal area network (HR-WPAN) has been standardized by the IEEE 802.15.3 task group (TG). To support multimedia services, the IEEE 802.15.3 TG adopts a time-slotted medium access control (MAC) protocol controlled by a central device. In the time division multiple access (TDMA)-based wireless packet networks, the packet scheduling algorithm plays a key role in quality of service (QoS) provisioning for multimedia services. In this paper, we propose an adaptive cross-layer packet scheduling method for the TDMA-based HR-WPAN. Physical channel conditions, MAC protocol, link layer status, random traffic arrival, and QoS requirement are taken into consideration by the proposed packet scheduling method. Performance evaluations are carried out through extensive simulations and significant performance enhancements are observed. Furthermore, the performance of the proposed scheme remains stable regardless of the variable system parameters such as the number of devices (DEVs) and delay bound.

Enhancements of the Modified PCF in IEEE 802.11 WLANs

  • Kanjanavapastit Apichan;Landfeldt Bjorn
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.313-324
    • /
    • 2005
  • The success of the IEEE 802.11 standard has prompted research into efficiency of the different medium access methods and their support for different traffic types. A modified version of the point coordination function (PCF) called modified PCF has been introduced as a way to improve the efficiency over the standard method. It has been shown through a simulation study and a mathematical analysis that channel utilization can be much improved compared to the standard, in case there is no so-called hidden station problem. However, under the hidden station problem, the efficiency of the modified PCF would obviously decrease. In this paper, some enhancements of the modified PCF are introduced. Firstly, we propose a retransmission process to allow frames involved in collisions to be retransmitted. Then, we propose a collision resolution mechanism to reduce the frame collision probability due to the hidden station problem. In addition, we propose a priority scheme to support prioritization for different traffic types such as interactive voice and video, and real-time data traffic in the modified PCF. To prevent the starvation of one low priority traffic, minimum transmission period is also guaranteed to each traffic type via an admission control algorithm. We study the performance of the modified PCF under the hidden station problem and the performance of the modified PCF with priority scheme through simulations. To illustrate the efficiency of the priority scheme, we therefore compare its simulation results with those of some standardized protocols: The distributed coordination function (DCF), the enhanced distributed channel access (EDCA), the PCF, and our previously proposed protocol: The modified PCF without priority scheme. The simulation results show that the increment of delay in the network due to the hidden station problem can be reduced using the proposed collision resolution mechanism. In addition, in a given scenario the modified PCF with priority scheme can provide better quality of service (QoS) support to different traffic types and also support a higher number of data stations than the previous proposals.

Performance Analysis on DCF Considering the Number of Consecutive Successful Transmission in Wireless LAN (무선랜에서 연속적인 전송성공 횟수를 고려한 DCF 성능분석)

  • Lim, Seog-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.388-394
    • /
    • 2008
  • In this paper, MAC(Medium Access Control) algorithm for the IEEE 802.11 DCF(Distributed Coordination Function) improving the performance is proposed and analyzed by simulation. The MAC of IEEE 802.11 WLAN to control data transmission uses two control methods called DCF and PCF(Point Coordination function). The DCF controls the transmission based on CSMA/CA(Carrier Sense Multiple Access With Collision Avoidance). The DCF shows excellent performance relatively in situation that competition station is less but has a problem that performance is fallen from throughput and delay viewpoint in situation that competition station is increased. This paper proposes an enhanced DCF algorithm that increases the CW to maximal CW after collision and decreases the CW smoothly after successful transmission in order to reduce the collision probability by utilizing the current status information of WLAN. To prove efficiency of proposed algorithm, a lots of simulations are conducted and analyzed.

Distributed CSMA/CA Medium Access Control for Incomplete Medium Sharing Systems with General Channel Access Constraints (불완전매체공유 환경을 위한 CSMA/CA기반 분산방식 매체접근제어기법)

  • Lee Byoung-Seok;Jeon Byoung-Wook;Choe Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.365-377
    • /
    • 2006
  • We define the incomplete medium sharing system as a multi-channel shared medium communication system where any types of constraints are imposed to the set of channels that may be allocated to any transmitter-receiver node pair. A set of distributed MAC schemes are proposed, all of which are based on the CSMA/CA scheme employed in IEEE 802. 11 WLAN standards. Distributed MAC schemes are proposed in three different forms, which can be differentiated by the number and the location of back-off timers; that is, (1) one timer for all queues destined for different receiver nodes, (2) multiple timers at individual transmission queues, (3) multiple timers for individual channels. Through an extensive set of computer simulations, the performances of the proposed MAC schemes show that the MAC scheme with timers at individual transmission queues outperform the others in terms of throughput and delay for most cases considered. The complexity of the proposed schemes is also compared, and the first scheme obviously turned out to be the simplest, and the complexity of the second and third schemes depends on the number of receiver nodes and the number of channels, respectively.