• Title/Summary/Keyword: Mediterranean

Search Result 278, Processing Time 0.021 seconds

Intestinal Parasites in an Ottoman Period Latrine from Acre (Israel) Dating to the Early 1800s CE

  • Eskew, William H.;Ledger, Marissa L.;Lloyd, Abigail;Pyles, Grace;Gosker, Joppe;Mitchell, Piers D.
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.6
    • /
    • pp.575-580
    • /
    • 2019
  • The aim of this study is to determine the species of parasites that affected the inhabitants of the city of Acre on the coast of the eastern Mediterranean during the Ottoman Period. This is the first archaeological study of parasites in the Ottoman Empire. We analysed sediment from a latrine dating to the early 1800s for the presence of helminth eggs and protozoan parasites which caused dysentery. The samples were examined using light microscopy and enzyme-linked immunosorbent assay (ELISA) kits. We found evidence for roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), fish tapeworm (Dibothriocephalus sp.), Taenia tapeworm (Taenia sp.), lancet liver fluke (Dicrocoelium dendriticum), and the protozoa Giardia duodenalis and Entamoeba histolytica. The parasite taxa recovered demonstrate the breadth of species present in this coastal city. We consider the effect of Ottoman Period diet, culture, trade and sanitation upon risk of parasitism in this community living 200 years ago.

An investigation of members of the tribe Ceramieae (Ceramiaceae, Rhodophyta) occurring on both the Mediterranean and Atlantic shores of Morocco

  • Hassoun, Mustapha;Wynne, Michael J.;Moussa, Hanaa;Salhi, Ghizlane;Zbakh, Hanaa;Riadi, Hassane;Kazzaz, Mohamed
    • ALGAE
    • /
    • v.33 no.3
    • /
    • pp.243-267
    • /
    • 2018
  • A taxonomic study was recently carried out on species of the tribe Ceramieae (Ceramiaceae, Rhodophyta), following an evaluation of previously published records and on the basis of field and laboratory investigations. In Morocco, the tribe is represented by 5 genera: Ceramium (21 taxa at specific and infraspecific levels), Gayliella (3 species), and by one species each of Centroceras, Corallophila and Microcladia. Among these, there are five new records for Morocco: Centroceras gasparrinii, Ceramium botryocarpum, Ceramium cingulatum, Ceramium echionotum var. mediterraneum, and Gayliella taylorii. The report of C. echionotum var. mediterraneum from the Atlantic coast of Morocco is one of the rare records from outside the Mediterranean. Ceramium ciliatum var. robustum and Ceramium codii are recorded for the first time from the Atlantic coast of Morocco. Centroceras clavulatum is excluded from Moroccan flora having been misidentified for C. gasparrinii. This paper summarizes the taxonomic characters of these species with images and presents a key for their identification. This report is the first detailed record of the species of the tribe Ceramieae for Morocco. As a result, the total number of taxa at both specific and infraspecific levels accepted in the tribe Ceramieae for Morocco, under current taxonomy and nomenclature, is 27.

A critical review of slag and fly-ash based geopolymer concrete

  • Akcaoglu, Tulin;Cubukcuoglu, Beste;Awad, Ashraf
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.453-458
    • /
    • 2019
  • Today, concrete remains the most important, durable, and reliable material that has been used in the construction sector, making it the most commonly used material after water. However, cement continues to exert many negative effects on the environment, including the production of carbon dioxide (CO2), which pollutes the atmosphere. Cement production is costly, and it also consumes energy and natural non- renewable resources, which are critical for sustainability. These factors represent the motivation for researchers to examine the various alternatives that can reduce the effects on the environment, natural resources, and energy consumption and enhance the mechanical properties of concrete. Geopolymer is one alternative that has been investigated; this can be produced using aluminosilicate materials such as low calcium (class F) FA, Ultra-Fine GGBS, and high calcium FA (class C, which are available worldwide as industrial, agricultural byproducts.). It has a high percentage of silica and alumina, which react with alkaline solution (activators). Aluminosilicate gel, which forms as a result of this reaction, is an effective binding material for the concrete. This paper presents an up-to-date review regarding the important engineering properties of geopolymer formed by FA and slag binders; the findings demonstrate that this type of geopolymer could be an adequate alternative to ordinary Portland cement (OPC). Due to the significant positive mechanical properties of slag-FA geopolymer cements and their positive effects on the environment, it represents a material that could potentially be used in the construction industry.

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city - structural aspects

  • Kappos, A.J.;Panagopoulos, G.K.;Sextos, A.G.;Papanikolaou, V.K.;Stylianidis, K.C.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.197-214
    • /
    • 2010
  • The paper presents a methodology for developing earthquake damage and loss scenarios for urban areas, as well as its application to two cities located in Mediterranean countries, Grevena (in Greece) and D$\ddot{u}$zce (in Turkey), that were struck by strong earthquakes in the recent past. After compiling the building inventory in each city, fragility curves were derived using a hybrid approach previously developed by the authors, and a series of seismic scenarios were derived based on microzonation studies that were specifically conducted for each city (see companion paper by Pitilakis et al.). The results obtained in terms of damage estimates, required restoration times and the associated costs are presented in a GIS environment. It is deemed that both the results obtained, and the overall methodology and tools developed, contribute towards the enhancement of seismic safety in the Mediterranean area (as well as other earthquake-prone regions), while they constitute a useful pre-earthquake decision-making tool for local authorities.

Prediction of the dynamic properties in rubberized concrete

  • Habib, Ahed;Yildirim, Umut
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.185-197
    • /
    • 2021
  • Throughout the previous years, many efforts focused on incorporating non-biodegradable wastes as a partial replacement and sustainable alternative for natural aggregates in cement-based materials. Currently, rubberized concrete is considered one of the most important green concrete materials produced by replacing natural aggregates with rubber particles from old tires in a concrete mixture. The main benefits of this material, in addition to its importance in sustainability and waste management, comes from the ability of rubber to considerably damp vibrations, which, when used in reinforced concrete structures, can significantly enhance its energy dissipation and vibration behavior. Nowadays, the literature has many experimental findings that provide an interesting view of rubberized concrete's dynamic behavior. On the other hand, it still lacks research that collects, interprets, and numerically investigates these findings to provide some correlations and construct reliable prediction models for rubberized concrete's dynamic properties. Therefore, this study is intended to propose prediction approaches for the dynamic properties of rubberized concrete. As a part of the study, multiple linear regression and artificial neural networks will be used to create prediction models for dynamic modulus of elasticity, damping ratio, and natural frequency.

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

Purification, Characterization and Application of a Cold Active Lipase from Marine Bacillus cereus HSS

  • Hassan, Sahar WM.;Abd El Latif, Hala H.;Beltagy, Ehab A.
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.71-80
    • /
    • 2022
  • Lipases (triacylglycerol acylhydrolases [EC 3.1.1.3]) are water-soluble enzymes. They catalyze the hydrolysis of fats and oils. A cold-active lipase from marine Bacillus cereus HSS, isolated from the Mediterranean Sea, Alexandria, Egypt, was purified and characterized. The total purification depending on lipase activity was 438.9 fold purification recording 632 U/mg protein. The molecular weight of the purified lipase was estimated to be 65 kDa using sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The optimum substrate concentration, enzyme concentration, pH, and temperature were 1.5 mM, 100 µl, pH 6 and 10℃, respectively. The lipase was tolerant to NaCl concentrations ranging from 1.5 to 4.5%. The lipase was affected by the tested metal ions, and its activity was inhibited by 16% in the presence of 0.05 M SDS. The application of the cold-active lipase for the removal of an oil stain from a white cotton cloth showed that it is a promising biological agent for the treatment of oily wastes and other related applications. To the best of our knowledge, this is the first report of the purification and characterization of a lipase from marine B. cereus HSS isolated from the Mediterranean Sea.

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Experimental investigation of the effect of the addition of Aerosil 200 nanoparticles on the water absorption of polymer concrete

  • A.M. Fattahi;Babak Safaei;Elham Moaddab;Zahra Pezeshki
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • In this work, the effect of the addition of Aerosil 200, an insulating resin applied in many industries, on the water absorption of cement plast mixture has been experimentally evaluated. First, the preparation stages of cement plast mixture was evaluated based on corresponding standards and then, the effect of the addition of Aerosil 200 nanoparticles (NPs) to cement plast mixtures with sand weight percentage range of 0-0.1% on the variation of water absorption properties was evaluated based on National Standard Institution of Iran 20185 for Concrete Flooring Blocks - Requirements and Test Procedures. Based on the obtained results, it could be found that excessive addition of NPs did not affect the physical properties of the final product. Water absorption percentage was increased in the weight percentage of cement. By the increase of the amount of Aerosil 200 NPs in the prepared cement plast mixture, the percentage of water absorption in weight percentage of sand was decreased. Cement plast with NPs presented significantly lower water absorption than that without NPs.

Simplified analysis of creep for preloaded reconstituted soft alluvial soil from Famagusta Bay

  • Garoushi, Ali Hossien Basheer;Uygar, Eris
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-169
    • /
    • 2022
  • Preloading of soft clays is a common ground stabilization method for improvement of compressibility and the undrained shear strength. The waiting period under preload is a primary design criterion controlling the degree of improvement obtained. Upon unloading the overconsolidation attained with respect to actual loads defines the long term performance. This paper presents a laboratory study for investigation of creep behavior of Famagusta Bay alluvial soft soil preloaded under various effective stresses for analysis of long term performance based on the degree of overconsolidation. Traditional one-dimensional consolidation tests as well as modified creep tests are performed on reconstituted soft specimens. Compressibility parameters are precisely backcalculated using one dimensional consolidation theory and the coefficient of creep is determined using the traditional Cassagrande method as well as two modified methods based on log cycles of time and the inflection of the creep curve. The test results indicated that the long term creep can be successfully predicted considering the proposed method. The creep coefficients derived as part of this method can also be related to the recompression index (recompression index, swelling index) considering the results of the testing method adopted in this study.