• Title/Summary/Keyword: Medical phantom

Search Result 1,095, Processing Time 0.051 seconds

Usefulness of Image Registration in Brain Perfusion SPECT (Brain Perfusion SPECT에서 Image Registration의 유용성)

  • Song, Ho-June;Lim, Jung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Purpose: The brain perfusion SPECT is the examination which is able to know adversity information related brain disorder. But brain perfusion SPECT has also high failure rates by patient's motions. In this case, we have to use two days method and patients put up with many disadvantages. We think that we don't use two days method in brain perfusion SPECT, if we can use registration method. So this study has led to look over registration method applications in brain perfusion SPECT. Materials and Methods: Jaszczak, Hoffman and cylindrical phantoms were used for acquiring SPECT image data on varying degree in x, y, z axes. The phantoms were filled with $^{99m}Tc$ solution that consisted of a radioactive concentration of 111 MBq/mL. Phantom images were acquired through scanning for 5 sec long per frame by using Triad XLT9 triple head gamma camera (TRIONIX, USA). We painted the ROI of registration image in brain data. So we calculated the ROIratio which was different original image counts and registration image counts. Results: When carring out the experiments under the same condition, total counts differential was from 3.5% to 5.7% (mean counts was from 3.4% to 6.8%) in phantom and patients data. In addition, we also run the experiments in the double activity condition. Total counts differential was from 2.6% to 4.9% (mean counts was from 4.1% to 4.9%) in phantom and patients data. Conclusion: We can know that original and registration data are little different in image analysis. If we use the image registration method, we can improve disadvantage of two days method in brain perfusion SPECT. But we must consider image registration about the distance differences in x, y, z axes.

  • PDF

Determination of the Phantom Scatter Factor ($S_P\;Factor$) using a small Block in the Phantom (작은 블럭을 이용한 판톰 내에서의 판톰 산란 인자(Sp Factor)측정법)

  • Yi Byong Yong;Hong Seok Min;Kim Jae Sung;Choi Eun Kyung;Chang Hyesook;Lee Myung Za;Chun Ha Chung
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.121-123
    • /
    • 1992
  • New measurement method for $S_{p}$ factors (Phantom Scatter Factors) is presented. The theoretical development of the approach is disscused showing that $S_{p}$ factors can be obtained from three measurements of ionnization in a blocked, reference field and open field. This method has been tested using $^{60}Co$ gamma rays. The results were within 1% deviation between the theory and the experiment for the $S_{p}$ factor. The new method does not need air measurement, and we could could determine the $S_P$ factors with a small piece of block

  • PDF

Evaluation of Dynamic Delivery Quality Assurance Process for Internal Target Volume Based RapidArc

  • Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.181-189
    • /
    • 2017
  • The conventional delivery quality assurance (DQA) process for RapidArc (Varian Medical Systems, Palo Alto, USA), has the limitation that it measures and analyzes the dose in a phantom material and cannot analyze the dosimetric changes under the motional organ condition. In this study, a DQA method was designed to overcome the limitations of the conventional DQA process for internal target volume (ITV) based RapidArc. The dynamic DQA measurement device was designed with a moving phantom that can simulate variable target motions. The dose distribution in the real volume of the target and organ-at-risk (OAR)s were reconstructed using 3DVH with the ArcCHECK (SunNuclear, Melbourne, USA) measurement data under the dynamic condition. A total of 10 ITV-based RapidArc plans for liver-cancer patients were analyzed with the designed dynamic DQA process. The average pass rate of gamma evaluation was $81.55{\pm}9.48%$ when the DQA dose was measured in the respiratory moving condition of the patient. Appropriate method was applied to correct the effect of moving phantom structures in the dose calculation, and DVH data of the real volume of target and OARs were created with the recalculated dose by the 3DVH program. We confirmed the valid dose coverage of a real target volume in the ITV-based RapidArc. The variable difference of the DVH of the OARs showed that dose variation can occur differently according to the location, shape, size and motion range of the target. The DQA process devised in this study can effectively evaluate the DVH of the real volume of the target and OARs in a respiratory moving condition in addition to the simple verification of the accuracy of the treatment machine. This can be helpful to predict the prognosis of treatment by the accurate dose analysis in the real target and OARs.

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom (몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성)

  • Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.139-142
    • /
    • 2014
  • The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.

Numerical Simulation and Experimental Observation of Blood Flows in the Carotid Artery (경동맥에서 혈액유동의 수치해석 및 실험적 관찰)

  • Yoo, S.S.;Suh, S.H.;Chung, T.S.;Cho, M.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.41-44
    • /
    • 1995
  • A numerical technique is employed to simulate the flow patterns in the human carotid artery and a phantom of the carotid artery made of acrylic material is used to observe the flow phenomena in the carotid artery. For numerical analysis the idealized geometric shape of the carotid artery is constructed to portray the phantom. Steady momentum equation is solved by the finite element method and the numerical results are compared with the results of MRA and color Doppler images.

  • PDF

Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation

  • Kim, Minho;Hong, Bong Hwan;Cho, Ilsung;Park, Chawon;Min, Sun-Hong;Hwang, Won Taek;Lee, Wonho;Kim, Kyeong Min
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.626-636
    • /
    • 2021
  • Boron-neutron capture therapy (BNCT) is a cancer treatment method that exploits the high neutron reactivity of boron. Monitoring the prompt gamma rays (PGs) produced during neutron irradiation is essential for ensuring the accuracy and safety of BNCT. We investigate the imaging of PGs produced by the boron-neutron capture reaction through Monte Carlo simulations of a gamma camera with a SrI2 scintillator and parallel-hole collimator. GAGG scintillator is also used for a comparison. The simulations allow the shapes of the energy spectra, which exhibit a peak at 478 keV, to be determined along with the PG images from a boron-water phantom. It is found that increasing the size of the water phantom results in a greater number of image counts and lower contrast. Additionally, a higher septal penetration ratio results in poorer image quality, and a SrI2 scintillator results in higher image contrast. Thus, we can simulate the BNCT process and obtain an energy spectrum with a reasonable shape, as well as suitable PG images. Both GAGG and SrI2 crystals are suitable for PG imaging during BNCT. However, for higher imaging quality, SrI2 and a collimator with a lower septal penetration ratio should be utilized.

A Study on the absorbed dose to water for high energy electron beams using Water equivalency of plastic phantom (고 에너지 전자선에서 물등가 고체팬톰을 이용한 물 흡수선량 측정에 관한 연구)

  • Sin, Dong-Ho;Sin, Dong-Oh;Kim, Sung-Hoon;Park, Sung-Yong;Ji, Young-Hoon;Ahn, Hee-Kyung;Kang, Jin-Oh;Hong, Seong-Eon
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In the International Code of Practice for dosimetry TRS-398 published by International Atomic Energy Agency(IAEA), water equivalency plastic phantom may be used under certain circumstances for electron beam dosimetry for beam quality E0${\leq}$ 10 MeV. In this study, Palstic Water$^{TM}$ and Virtual Water$^{TM}$ were evaluated in order to determine fluence scaling factor hpl. Plastic phantom was evaluated for five electron energy from 6 MeV to 20 MeV. From the measured data of Palstic Water$^{TM}$, the fluence scaling factor hpl was found to be average 0.9964 and Virtual Water$^{TM}$ fluence scaling factor was 1.0156.

  • PDF

A Study on the Minimization of Spatial Error in 3-Demensional Neuronavigator (3차원 영상지원 뇌수술장비의 공간오차 최소화에 관한 연구)

  • 이동준;다영신;이정교
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 1997
  • 3-dimensional Neuronavigator, Viewing Wand(ISG Technologies, Toronto, Cannda) is the surgery aid equipment for real time image (CT or MRI) guided surgery. The assurance of spatial accuracy of this system is important for clinical application. In this study, we have designed the acrylic brain phantom and measured the spatial error with that phantom. The phantom has designed to have capability to simulate image guided surgery. The phantom has 22 vertical rods whose diameters are 5mm and each rods has different length. CT scans were performed by 2.0mm slice and reconstructed for 3-Dimensional analysis. End point of rods can be obtained using reconstructed 3- Dimensional images and they are compared to actual position data. Average deviation was less than 2mm for various situations. Spatial error of Viewing Wand is acceptable in the clinical points of view, while cosmetics of the software needs to be modified to more user friend. Better accuracy can be expected when we apply the mixed fiducial fit registration and surface fit registration method. And even better results can be obtained if registration points distributed even and symetric around the target.

  • PDF