• Title/Summary/Keyword: Medical phantom

Search Result 1,091, Processing Time 0.023 seconds

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

Assessment of Radiation Shielding Ability of Printing Materials Using 3D Printing Technology: FDM 3D Printing Technology (3D 프린팅 기술을 이용한 원료에 대한 방사선 차폐능 평가: FDM 방식의 3D 프린팅 기술을 중심으로)

  • Lee, Hongyeon;Kim, Donghyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.909-917
    • /
    • 2018
  • 3D printing technology is expected to be an innovative technology of the manufacturing industry during the 4th industrial revolution, and it is being used in various fields including biotechnology and medical field. In this study, we verified the printing materials through Monte Carlo simulation to evaluate the radiation shielding ability of the raw material using this 3D printing technology. In this paper, the printing materials were selected from the raw materials available in a general-purpose FDM-based 3D printer. Simulation of the ICRU phantom and the shielding system was carried out to evaluate the shielding effect by evaluating the particle fluence according to the type and energy of radiation. As a result, the shielding effect tended to decrease gradually with increasing energy in the case of photon beam, and the shielding effect of TPU, PLA, PVA, Nylon and ABS gradually decreased in order of materials. In the case of the neutron beam, the neutron intensity increases at a low thickness of 5 ~ 10 mm. However, the effective shielding effect is shown above a certain thickness. The shielding effect of printing material is gradually increased in the order of Nylon, PVA, ABS, PLA and TPU Respectively.

Variation on Estimated Values of Radioactivity Concentration according to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Joo-Young
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.645-653
    • /
    • 2021
  • With the recent development of precision medicine(Theranostics), interest and utilization of the quantitative function of SPECT/CT are increasing. This study aims to investigate the effect on the radioactivity concentration estimate by the increase or decrease in the total time of SPECT/CT imaging conditions. A standard image was obtained by the conditions of a total acquisition time of 600 sec(10 sec/f × 120 frames) by diluting 99mTc 91.76 MBq in a cylindrical phantom filled with sterile water, and a comparative image was obtained by increasing the total acquisition time by -90%, -75%, -50%, -25%, +50%, +100%. The CNR, radioactive concentration estimate(cps/ml), and the variation rate(%) of the recovery coefficient(RC) were analyzed by measuring the overall coefficient of interest in each image. The results[CNR, Radiation Concentration, RC] by the change in the number of projections for each increase or decrease rate(-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results[CNR, Radiation Concentration, RC] by the acquisition time change for each increase or decrease rate(-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at -90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Image quality(CNR) showed a pattern of change in proportion to the increase or decrease in the total acquisition time of SPECT/CT, but the result at quantitative evaluation showed a change of less than 5% in all experimental conditions, maintaining quantitative accuracy(RC less than 0.05) without much influence.

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.

Evaluation of Effect of Decrease in Metallic Artifacts using the Synthetic MR Technique (Synthetic MR 기법을 이용한 금속 인공물 감소 효과 평가)

  • Soon-Yong, Kwon;Nam-Yong, Ahn;Jeong-Eun, Oh;Seong-Ho, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.835-842
    • /
    • 2022
  • This study is aimed to evaluate the effects of a synthetic MR technique in reducing metal artifacts. In the experiment, the in-plane and through-plane images were acquired by applying a synthetic MR technique and a high-speed spin echo technique to a phantom manufactured with screw for spinal surgery. The area of the metal artifact was compared. The metal artifacts were measured by dividing the signal-loss and the signal pile-up areas, and the area of the final artifact was calculated through the sum of the two. As a result, the metal artifacts were relatively reduced when the synthetic MR techniques were applied to both in-plane and through-plane. Comparing by sequence, the in-plane T1 images decreased by 23.45%, T2 images by 20.85%, PD images by 19.67%, and FLAIR images by 22.12%. Also, in the case of the through-plane, the T1 image decreased by 62.95%, the T2 image decreased by 73.93%, the PD image decreased by 74.68%, and the FLAIR image decreased by 66.43%. The cause of this result is that when the synthetic MR technique is applied, the distortion is due to the signal pile-up and does not occur and the size of the entire metal artifact is reduced. Therefore, synthetic MR technique can very effectively reduce metal artifacts, which can help to increase the diagnostic value of images.

The Comparison of Quantitative Accuracy between Energy Window-Based and CT-Based Scatter Correction Method in SPECT/CT Images (SPECT/CT 영상에서 에너지창 기반 산란보정과 CT 기반 산란보정 방법의 정량적 정확성 비교)

  • Kim, Ji-Hyeon;Lee, Joo-Young
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • In SPECT image, scatter count is the cause of quantitative count error and image quality degradation. This study is to evaluate the accuracy of CT based SC(CTSC) and energy window based SC(EWSC) as the comparison with existing Non SC. SPECT/CT images were obtained after filling air in order to acquire a reference image without the influence of scatter count inside the Triple line insert phantom setting hot rod(99mTc 74.0 MBq) in the middle and each SPECT/CT image was obtained each separately after filling water instead of air in order to derive the influence of scatter count under the same conditions. For EWSC, 9 sub-energy windows were set additionally in addition to main energy window(140 keV, 20%) and then, images were acquired at the same time and five types of EWSC including DPW(dual photo-peak window)10%, DEW(dual energy window)20%, TEW(triple energy window)10%, TEW5.0%, TEW2.5% were used. Under the condition without fluctuations in primary count, total count was measured by drawing volume of interest (VOI) in the images of the two conditions and then, the ratio of scatter count of total counts was calculated as percent scatter fraction(%SF) and the count error with image filled with water was evaluated with percent normalized mean-square error(%NMSE) based on the image filled with air. Based on the image filled with air, %SF of images filled with water to which each SC method was applied is non scatter correction(NSC) 37.44, DPW 27.41, DEW 21.84, TEW10% 19.60, TEW5% 17.02, TEW2.5% 14.68, CTSC 5.57 and the scatter counts were removed the most in CTSC and %NMSE is NSC 35.80, DPW 14.28, DEW 7.81, TEW10% 5.94, TEW5% 4.21, TEW2.5% 2.96, CTSC 0.35 and the error in CTSC was found to be the lowest. In SPECT/CT images, the application of each scatter correction method used in the experiment could improve the quantitative count error caused by the influence of scatter count. In particular, CTSC showed the lowest %NMSE(=0.35) compared to existing EWSC methods, enabling relatively accurate scatter correction.

The Characteristics of Temperature Variation in Electronic Warm Acupuncture Device (전기식 온침기의 온도 변화 특성에 관한 연구)

  • Ja-Ha Lee;Jeong-Hyun Moon;U-Ryeong Chung;Soo-Hwa Hong;Gyoungeun Park;Byung Wook Lee;Won-Suk Sung;Jong-Hwa Yoon;Eun-Jung Kim
    • Korean Journal of Acupuncture
    • /
    • v.40 no.4
    • /
    • pp.184-193
    • /
    • 2023
  • Objectives : The purpose of this study is to understand the temperature characteristics depending on the thickness and material of the needle used with the Electronic Warm Acupuncture Device (EWAD). Methods : We controlled experimental environment and measured temperature changes of a silicon phantom in which K-type thermocouples were inserted at depths of 2, 7 mm. EWAD perfomed with acupuncture needles of various thicknesses (0.25×60 mm, 0.40×60 mm, and 0.50×60 mm) and materials (Gold 0.40×50 mm). We set non-needle (only heated with EWAD skin heater) group as a control group. Results : The maximum temperature and temperature changes of 0.40 mm, 0.50 mm needle group were significantly higher than the non-needle group. The highest temperature range in all needle groups was 0.50 mm needle group (41.44±0.31℃). However, the 0.25 mm needle group was not significantly different from the non-needle group. Maximum temperature of gold needle group was significantly higher than stainless steel needle group. Temperature changes of gold needle group were higher than stainless steel group at the depth of 7 mm. Conclusions : It was found that needle thickness and material of acupuncture had an effect on the temperature of the EWAD. When performing EWAD treatment, consideration of thickness and material of acupuncture is needed. Future research is needed using phantoms that can reflect actual clinical situations and better mimic the human body.

Standards for Applying Reasonable Receive Bandwidth to Suppress Metal Artifacts in MRI (MRI 검사 시 금속 인공물 억제를 위한 합리적인 수신대역폭 적용 기준)

  • Se-Jong Yoo;Min-Cheol Jeon;Nam-Yong An;Soon-Yong Kwon;Seong-Ho Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1115-1122
    • /
    • 2023
  • This study aimed to present reasonable reception bandwidth application standards for the purpose of suppressing metal objects during MRI examinations. For this purpose, T2 contrast images were acquired using high-speed spin echo technology on a phantom made of screws for spinal surgery, and metal objects were detected. In addition, images were obtained by increasing the reception bandwidth from 100 Hz/PX to 800 Hz/PX by 100 Hz/PX. The metal artifacts were determined as the sum of the areas of the signal attenuation area and the signal accumulation area. In addition, Pearson correlation analysis was performed to analyze the pattern of metal artifacts according to imaging variables. As a result, the signal accumulation area did not change significantly as the reception bandwidth increased (p>0.05), but the signal loss area and the area of metal artifacts decreased as the reception bandwidth increased (p<0.05). Interestingly, the area of metal objects decreased to a maximum in the section where the reception bandwidth was increased from 100 Hz/PX to 200 Hz/PX, consistent with the section where the echo spacing was reduced to a maximum due to the increase in reception bandwidth. In addition, the correlation analysis results also showed that the eco spacing was more related to the signal attenuation area and the area of metal objects than to the reception bandwidth. Therefore, if the reception bandwidth is increased for the purpose of reducing metal objects, it is reasonable to set it based on a value that minimizes the echo spacing in consideration of image quality factors.

Consideration on Methods to Suppress Metal Artifacts Caused by Spinal Fusion during Spine MRI Study (척추 MRI 검사 시 척추 유합술로 인한 금속 인공물 억제 방법에 대한 고찰)

  • Se-Jong Yoo;Soon-Yong Kwon;Seong-Ho Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1123-1131
    • /
    • 2023
  • This study aimed to present a method to effectively suppress metal artifacts caused by spinal fusion surgery during spinal MRI study. For this purpose, a phantom made of spinal surgery screws was created to reproduce the metal artifact. Then, images were acquired with 1.5T and 3.0T MRI to evaluate changes in metal artifacts according to magnetic field strength. In addition, metal artifacts were evaluated by increasing the receive bandwidth to 200, 400 and 800 Hz/PX. As a result, metal artifacts occurring in images obtained from the 1.5T MRI decreased by approximately 52.2% compared to images obtained from the 3.0T MRI, showing a significant difference (p<0.05). In particular, the signal loss and signal pile up areas were reduced by approximately 52.81% and 42.71%, respectively, showing a significant effect in suppressing metal artifacts. On the other hand, when images were acquired while increasing the receive bandwidth from 200 to 800 Hz/PX, there was no significant effect, with a decrease of up to 8.93% for the 1.5T MRI and up to 10.98% for the 3.0T MRI (p>0.05). As a result of this study, increasing the receive bandwidth reduced signal loss and reduced some metal artifacts, but did not have a significant effect because it did not suppress signal pile up. However, when the magnetic field strength was reduced from 3.0T to 1.5T, signal loss and signal pile up were greatly reduced, effectively improving the metal artifact. Therefore, in order to suppress metal artifacts caused by spinal fusion surgery, study using a low magnetic field MRI can be said to be the most effective method.

Pediatric Radiation Examination by Development of Bismuth Shield Research on Radiation Exposure (비스무스 차폐체 개발을 통한 소아 방사선검사의 피폭에 관한 연구)

  • Hoon Kim;Yong-Keun Kim;Joon-Nyeon Kim;Seung-Hyun Wi;Eun-Kyung Park;Myung-Jun Chae;Bu-Gil Baek;Eun-Hye Kim;Cheong-Hwan Lim
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.205-211
    • /
    • 2024
  • Currently, with the development of technologies, X-ray examinations for medical examinations at hospital is increasing. This study was conducted to help reduce radiation exposure by measuring the exposure dose received by pediatric patients and the spatial dose of the X-ray room. Dosimeters were installed in the eyeball, thyroid gland, breast, gonads and 4 directions at a distance of 30 cm, 40 cm, 50 cm from the phantom. The dose was measured ten times each, before, and after the application of the bismuth shield under the examination conditions of the head, chest, and abdomen of pediatric patients. Under the condition of head examination, when a shielding was applied, the dose reduction rate was 68.58% for the eyeball, 72.88% for the thyroid, 84.2% for the breast, and 72.36% for the gonad. The chest examination showed reductions of 19.56% eyeball, 56.98% thyroid, 1.21% breast, and 0.68% gonad. The abdominal examination showed reduction rates of 2.6% eyeball, 10.67% thyroid, 19.85% breast, and 82.02% gonad. Spatial dose decreased by 62.25% at 30 cm, 61.16% at 40 cm, and 68.68% at 50 cm. When the bismuth shield was applied, there was a decrease in dose across all examinations, as well as a reduction in spatial dose. Continued research on the use of bismuth shields will help radiological technologists achieve their goal of dose reduction.