• Title/Summary/Keyword: Medical linear accelerator

Search Result 247, Processing Time 0.024 seconds

Dose Volume Histogram Analysis for Comparison of Usability of Linear Accelerator Flattening Filter

  • Ji, Yun-Sang;Dong, Kyung-Rae;Ryu, Jae-Kwang;Choi, Ji-Won;Kim, Mi-Hyun
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.297-302
    • /
    • 2018
  • The wedge filter has two movements, fixed and dynamic. In this study, the depth dose distribution was analyzed to determine the stability of the dose distribution and dose volume histograms obtained by evaluating the usability of the critical normal tissue dose around the tumor dose. The depth dose was analyzed from the dose distribution from a Linac (6 MV and 10 MV irradiation field of energy $20{\times}20cm^2$, wedge filter with a SSD of 100 cm and $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ Y1-in (Left -7 cm), Y2-out(Right +7 cm). To analyze the fluctuations of the depth dose, a fixed wedge and dynamic wedge toe portion was examined according to the energy and angle because the size of the fluctuations was included in the error bound and did not show significant differences. The neck, breast, and pelvic dosimetry in tumor tissue are measured more commonly with a dynamic wedge than a fixed wedge presumably due to the error range. On the other hand, dosimetry of the surrounding normal tissue is more common using a fixed wedge than with a dynamic wedge.

Analysis of the Imaging Dose for IGRT/Gated Treatments (영상유도 및 호흡동조 방사선치료에서의 영상장비에 의한 흡수선량 분석)

  • Shin, Jung-Suk;Han, Young-Yih;Ju, Sang-Gyu;Shin, Eun-Hyuk;Hong, Chae-Seon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • Purpose: The introduction of image guided radiation therapy/four-dimensional radiation therapy (IGRT/4DRT) potentially increases the accumulated dose to patients from imaging and verification processes as compared to conventional practice. It is therefore essential to investigate the level of the imaging dose to patients when IGRT/4DRT devices are installed. The imaging dose level was monitored and was compared with the use of pre-IGRT practice. Materials and Methods: A four-dimensional CT (4DCT) unit (GE, Ultra Light Speed 16), a simulator (Varian Acuity) and Varian IX unit with an on-board imager (OBI) and cone beam CT (CBCT) were installed. The surface doses to a RANDO phantom (The Phantom Laboratory, Salem, NY USA) were measured with the newly installed devices and with pre-existing devices including a single slice CT scanner (GE, Light Speed), a simulator (Varian Ximatron) and L-gram linear accelerator (Varian, 2100C Linac). The surface doses were measured using thermo luminescent dosimeters (TLDs) at eight sites-the brain, eye, thyroid, chest, abdomen, ovary, prostate and pelvis. Results: Compared to imaging with the use of single slice non-gated CT, the use of 4DCT imaging increased the dose to the chest and abdomen approximately ten-fold ($1.74{\pm}0.34$ cGy versus $23.23{\pm}3.67$cGy). Imaging doses with the use of the Acuity simulator were smaller than doses with the use of the Ximatron simulator, which were $0.91{\pm}0.89$ cGy versus $6.77{\pm}3.56$ cGy, respectively. The dose with the use of the electronic portal imaging device (EPID; Varian IX unit) was approximately 50% of the dose with the use of the L-gram linear accelerator ($1.83{\pm}0.36$ cGy versus $3.80{\pm}1.67$ cGy). The dose from the OBI for fluoroscopy and low-dose mode CBCT were $0.97{\pm}0.34$ cGy and $2.3{\pm}0.67$ cGy, respectively. Conclusion: The use of 4DCT is the major source of an increase of the radiation (imaging) dose to patients. OBI and CBCT doses were small, but the accumulated dose associated with everyday verification need to be considered.

Evaluation of the Small Field of for the Detector Type Medical Linear Accelerator (의료용 선형가속기의 소조사면에 대한 검출기 종류에 따른 평가)

  • Lee, Dong-Woon;Jung, Kang-Kyo;Shin, Gwi-Soon;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently linear accelerator of radiation therapy intensity modulated radiation therapy, stereotactic radiation therapy are widely used. Such radiation treatment techniques are generally difficult to exclude the small field by using the inverse treatment plan. It is necessary to dose an accurate measurement of characteristics of the small field. Thus, using different detectors to measure the volume of the effective percentage depth dose, beam profile, and the output factor of the small field was to evaluate the dose characteristics of each detector. Experimental results for the X-ray beam 6 MV energy beam quality($PDD_{20}/PDD_{10}$) is $10{\times}10cm^2$ Diode detector is as high as 2.4% compared to Pinpoint detector. All field size to lesser effective volume of Diode detector shows that it is far better than other detectors by more than 50% of small penumbra, therefore spatial resolution far excellent. In field size $2{\times}2cm^2$ Semiflex detector was measured about 2% less than the other detector. Field size $1{\times}1cm^2$ is that there is no judgment about the validity show the difference between 20%. Field size $1{\times}1cm^2$ from the measured values of the Diode detector and Pinpoint detector showed a 13% difference. Less than field size $3{\times}3cm^2$ the feed to the difference between the output factor of the effective volume of the detector to be used for the effective volume available to the detector.

Effect of Electron-beam Irradiaton on the Artificial Bone Substitutes Composed of Hydroxyapatite and Tricalcium Phosphate Mixtures with Type I Collagen (수산화인회석과 인산삼칼슘 및 1형 콜라젠 혼합골의 전자빔 조사 효과)

  • Park, Jung Min;Kim, Soung Min;Kim, Min Keun;Park, Young Wook;Myoung, Hoon;Lee, Byung Cheol;Lee, Jong Ho;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.38-50
    • /
    • 2013
  • Purpose: The aim of this study is to evaluate the effect and potential of electron beam (E-beam) irradiation treatment to the synthetic bony mixtures composed of hydroxyapatite (HA; Bongros$^{(R)}$, Bio@ Co., Korea) and tricalcium phosphate (${\beta}$-TCP, Sigma-Aldrich Co., USA), mixed at various ratios and of type I collagen (Rat tail, BD Biosciences Co., Sweden) as an organic matrix. Methods: We used 1.0~2.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator (power 100 KW, pressure 115 kPa, temperature $-30{\sim}120^{\circ}C$, sensor sensitivity 0.1~1.2 mV/kPa, generating power sensitivity 44.75 mV/kPa, supply voltage $5{\pm}0.25$ V) with different irradiation dose, such as 1, 30 and 60 kGy. Structural changes in this synthetic bone material were studied in vitro, by scanning electron microscopy (SEM), elementary analysis and field emission scanning electron microscope (FE-SEM), attenuated total reflection (ATR), and electron spectroscopy for chemical analysis (ESCA). Results: The large particular size of HA was changed after E-beam irradiation, to which small particle of TCP was engaged with organic collagen components in SEM findings. Conclusion: The important new in vitro data to be applicable as the substitutes of artificial bone materials in dental and medical fields will be able to be summarized.

The Fabrication and Evaluation of HgI2 Semiconductor Detector as High Energy X-ray Dosimeter Application (고에너지 X선 선량계 적용을 위한 TiO2 첨가된 요오드화수은 반도체 검출기 제작 및 평가)

  • Choi, Il Hong;Noh, Sung Jin;Park, Jung Eun;Park, Ji Koon;Kang, Sang Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.383-387
    • /
    • 2014
  • In this paper, for a new detection system development with the better accurate dose evaluation and beam distribution imaging using the small field irradiation of linear accelerator, the compound semiconductor based detection sensors were fabricated and the performance evaluation was investigated. The special particle-in-binder sedimentation was used for a large area film sensor fabrication. The detection properties for high energy x-rays were investigated from a dark current, an output current, a rising time, a falling time, and response delay measurement. The experimental results, the $TiO_2$ mixed $HgI_2$ sensor showed the best electrical characteristics than $PbI_2$, PbO, pure $HgI_2$. Linearity, repeatability, and accuracy tests from LINAC were tested, the $TiO_2$ mixed $HgI_2$ sensor showed the better performance than the commercially available dosimetry devices.

A Study on the Thyroid Dose High-Energy Radiation Therapy of Lung Cancer (폐암 고에너지 방사선치료 시 갑상선 피폭에 관한 연구)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.297-302
    • /
    • 2015
  • High-energy medical linear accelerator on the dose to the thyroid cancer during radiotherapy were evaluated using optical stimulation luminescence dosimeters(OSLD) using. Scattered's influence in the case of 3D-CRT 25.4 mSv, 28.8 mSv, 31.3 mSv, 26.5 mSv, 27.4 mSv 5 times with an average 27.9 mSv, in the IMRT 46.8 mSv, 43.2 mSv, 42.3 mSv, 41.5 mSv, 44.1 mSv to five times the average of 43.6 was the result of mSv. In the case of light neutron dosimetry results 3D-CRT 3 mSv, 3 mSv, 3.4 mSv, 3.5 mSv, 3.1 mSv to five times the average 3.2 mSv, in the IMRT 5.1 mSv, 4.8 mSv, 4.2 mSv, 4.8 mSv, 4.9 mSv, to five times the average of 4.7 was the result of mSv. Both parties and the light scattered neutrons were significantly appreciated compared to IMRT 3D-CRT. Treatment of cancer using radiation workers, as in this study, and that a significant amount of scattered rays in the adjacent normal tissues during radiation therapy using energy assessment to influence by fully aware of this information is necessary for the exposure reduction efforts the feed.

The Evaluation and Fabrication of Photoconductor Sensor for Quality Assurance of Radiation Therapy Devices (방사선치료기기 정도관리를 위한 광도전체 센서 제작 및 평가)

  • Kang, Sang Sik;Noh, Sung Jin;Jung, Bong Jae;Noh, Ci Chul;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.565-569
    • /
    • 2016
  • Recently, a use of linear accelerator with a multi-leaf collimator(MLC) for radiation therapy is increasing. The importance of quality assurance (QA) for the linear accelerator is emphasized as the side effects of the inaccurate delivery of the radiation beam has been increased according to the high dose irradiation technique. In this study, The $HgI_2$ and $PbI_2$ photoconductor layer samples of $400{\mu}m$ thickness were fabricated using sedimentation method among particle-in-binder technology. From the fabricated samples, the electrical properties(dark current, output current, response properties and linearity) were investigated. From the experimental results, $HgI_2$ has good charge signal generation and linearity. Finally, from the signal response results about various thickness of $HgI_2$ sensor, the signal creation efficiency of $400{\mu}m$ thickness of $HgI_2$ sensor has the highest value and the excellent reproducibility below ${\pm}2.5%$.

Analysis of Output Constancy Checks Using Process Control Techniques in Linear Accelerators (선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석)

  • Oh, Se An;Yea, Ji Woon;Kim, Sang Won;Lee, Rena;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.185-192
    • /
    • 2014
  • The purpose of this study is to evaluate the results for the quality assurance through a statistical analysis on the output characteristics of linear accelerators belonging to Yeungnam University Medical Center by using the Shewhart-type chart, Exponentially weighted moving average chart (EWMA) chart, and process capability indices $C_p$ and $C_{pk}$. To achieve this, we used the output values measured using respective treatment devices (21EX, 21EX-S, and Novalis Tx) by medical physicists every month from September, 2012 to April, 2014. The output characteristics of treatment devices followed the IAEA TRS-398 guidelines, and the measurements included photon beams of 6 MV, 10 MV, and 15 MV and electron beams of 4 MeV, 6 MeV, 9 MeV, 12 MeV, 16MeV, and 20 MeV. The statistical analysis was done for the output characteristics measured, and was corrected every month. The width of control limit of weighting factors and measurement values were calculated as ${\lambda}=0.10$ and L=2.703, respectively; and the process capability indices $C_p$ and $C_{pk}$ were greater than or equal to 1 for all energies of the linear accelerators (21EX, 21EX-S, and Novalis Tx). Measured values of output doses with drastic and minor changes were found through the Shewhart-type chart and EWMA chart, respectively. The process capability indices $C_p$ and $C_{pk}$ of the treatment devices in our institution were, respectively, 2.384 and 2.136 for 21EX, 1.917 and 1.682 for 21EX-S, and 2.895 and 2.473 for Novalis Tx, proving that Novalis Tx has the most stable and accurate output characteristics.

The study on dose variation due to exchange of Upper and Lower jaw in the linear accelerator (선형가속기에서 상위조리개와 하위조리개의 교환에 의한 선량 변화의 고찰)

  • Lim CK.;Kim HN.;Song KW.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.6-10
    • /
    • 1999
  • The field size can be beam output, therefore MonitorUnit can be varied due to field size dependence The purpose of this study is to evaluate and compare the dose variation according to exchange of collimator The measurements were perfomed with Wellhofer dosimetry system(water phantom. ion chamber. electrometer. system controller. build up cap. etc)and two types of linear accerlerator (Mevatron KD, MevatronMX) Scatter can be affected to field size dependence and scatter correction is separated into collimator and phantom components, scatter components can affect by exchanging of collimator Measurements of collimator scatter factor(Sc) was done in air with build up cap. 1)Square field (5cm2 to 40cm2) was measured 2)and then keeping the upper jaw constant at loom and varing lower jaw from 5cm to 40cm, 3)keeping the lower jaw constant at 10cm and varing upper jaw from 5cm to 40cm Measurements of total scatter factor(Scp) was done in water at Dmax as the procedure of collimator scatter factor measurements in water Dmax The total scatter factors were obtained to the following equation(Sp=Scp/Sc) The measured data is normalized to the data of reference field size($10{\times}10$), rectangular field is inverted to equivalent field to compare three field size data As the collimator setting is varied, the output was changed In conclusion, the error was obtained small but it must be eliminated if we intend to reach the common stated goal of $5\%$ overall uncertainty in dose determination

  • PDF

Calibration of TEPC for CubeSat Experiment to Measure Space Radiation

  • Nam, Uk-Won;Park, Won-Kee;Lee, Jaejin;Pyo, Jeonghyun;Moon, Bong-Kon;Lee, Dae-Hee;Kim, Sunghwan;Jin, Ho;Lee, Seongwhan;Kim, Jungho;Kitamura, Hisashi;Uchihori, Yukio
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • A newly designed Tissue Equivalent Proportional Counter (TEPC) has been developed for the CubeSat mission, SIGMA (Scientific cubesat with Instruments for Global Magnetic field and rAdiation) to investigate space radiation. In order to test the performance of the TEPC, we have performed heavy ion beam experiments with the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. In space, human cells can be exposed to complex radiation sources, such as X-ray, Gamma ray, energetic electrons, protons, neutrons and heavy charged particles in a huge range of energies. These generate much a larger range of Linear Energy Transfer (LET) than on the ground and cause unexpected effects on human cells. In order to measure a large range of LET, from 0.3 to $1,000keV/{\mu}m$, we developed a compact TEPC which measures ionized particles produced by collisions between radiation sources and tissue equivalent materials in the detector. By measuring LET spectra, we can easily derive the equivalent dose from the complicated space radiation field. In this HIMAC experiment, we successfully obtained the linearity response for the TEPC with Fe 500 MeV/u and C 290 MeV/u beams and demonstrated the performance of the active radiation detector.