• Title/Summary/Keyword: Medical electron

Search Result 821, Processing Time 0.032 seconds

Gamma irradiation-induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto ePTFE for implant applications

  • Mohd Hidzir, Norsyahidah;Radzali, Nur Ain Mohd;Rahman, Irman Abdul;Shamsudin, Siti Aisyah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2320-2327
    • /
    • 2020
  • The extreme hydrophobicity of expanded polytetrafluoroethylene (ePTFE) hinders bone-tissue integration, thus limiting the use of ePTFE in medical implant applications. To improve the potential of ePTFE as a biomaterial, 2-hydroxyethyl methacrylate (HEMA) was grafted onto the ePTFE surface using the gamma irradiation technique. The characteristics of the grafted ePTFE were successfully evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR), field-emission scanning electron microscopy (FESEM)/energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). Under the tensile test, the modified ePTFE was found to be more brittle and rigid than the untreated sample. In addition, the grafted ePTFE was less hydrophobic with a higher percentage of water uptake compared to the untreated ePTFE. The protein adsorption test showed that grafted ePTFE could adsorb protein, which was denoted by the presence of N peaks in the XPS analysis. Moreover, the formation of the globular mineral on the grafted ePTFE surface was successfully visualized using the FESEM analysis, with a ratio of 1.94 for Ca:P minerals by the EDX. To summarize, the capability of the modified ePTFE to show protein adsorption and mineralization indicates the improvement of the polymer properties, and it can potentially be used as a biomaterial for implant application.

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

Effect of Bevacizumab on Human Tenon's Fibroblasts Cultured from Primary and Recurrent Pterygium

  • Park, Young Min;Kim, Chi Dae;Lee, Jong Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.357-363
    • /
    • 2015
  • The purpose of this study was to compare the inhibitory effect of bevacizumab on human Tenon's fibroblasts (HTFs) cultured from primary and recurrent pterygium. Cultured HTFs were exposed to 2.0, 5.0, 7.5, and 15.0 mg/mL concentration of bevacizumab for 24 hours. The 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase leakage assays were then performed to assess fibroblast metabolism and viability. The matrix metalloproteinase (MMP), procollagen type I C terminal propeptide (PIP), and laminin immunoassays were performed to examine extracellular matrix production. Changes in cellular morphology were examined by phase-contrast and transmission electron microscopy. Both metabolic activity and viability of primary and recurrent pterygium HTFs were inhibited by bevacizumab in a dose-dependent manner, especially at concentrations greater than 7.5 mg/mL. Both types of HTFs had significant decreases in MMP-1, PIP, and laminin levels. Distinctly, the inhibitory effect of bevacizumab on MMP-1 level related with collagenase in primary pterygium HTFs was significantly higher than that of recurrent pterygium. Significant changes in cellular density and morphology both occurred at bevacizumab concentrations greater than 7.5 mg/mL. Only primary pterygium HTFs had a reduction in cellular density at a bevacizumab concentration of 5.0 mg/mL. Bevacizumab inhibits primary and recurrent pterygium HTFs in a dose-dependent manner, especially at concentrations greater than 7.5 mg/mL. As the primary HTFs produces larger amounts of MMP-1 compared to recurrent HTFs, significant reduction in MMP-1 level in primary pterygium HTFs after exposure to bevacizumab is likely to be related to the faster cellular density changes in primary pterygium HTFs.

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

  • Kim, Kyung-O;Ahn, Woo-Sang;Kwon, Tae-Je;Kim, Soon-Young;Kim, Jong-Kyung;Ha, Jang-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.567-572
    • /
    • 2011
  • A sensitivity analysis of the methods used to evaluate the transport properties of a CdZnTe detector was performed using two different radiations (${\alpha}$ particle and gamma-ray) emitted from an $^{241}Am$ source. The mobility-lifetime products of the electron-hole pair in a planar CZT detector ($5{\times}5{\times}2\;mm^3$) were determined by fitting the peak position as a function of biased voltage data to the Hecht equation. To verify the accuracy of these products derived from ${\alpha}$ particles and low-energy gamma-rays, an energy spectrum considering the transport property of the CZT detector was simulated through a combination of the deposited energy and the charge collection efficiency at a specific position. It was found that the shaping time of the amplifier module significantly affects the determination of the (${\mu}{\tau}$) products; the ${\alpha}$ particle method was stabilized with an increase in the shaping time and was less sensitive to this change compared to when the gamma-ray method was used. In the case of the simulated energy spectrum with transport properties evaluated by the ${\alpha}$ particle method, the peak position and tail were slightly different from the measured result, whereas the energy spectrum derived from the low-energy gamma-ray was in good agreement with the experimental results. From these results, it was confirmed that low-energy gamma-rays are more useful when seeking to obtain the transport properties of carriers than ${\alpha}$ particles because the methods that use gamma-rays are less influenced by the surface condition of the CZT detector. Furthermore, the analysis system employed in this study, which was configured by a combination of Monte Carlo simulation and the Hecht model, is expected to be highly applicable to the study of the characteristics of CZT detectors.

An Experimental Study on the Effect of Hypothermic Oxygenated Cardioplegic Solution on Myocardial Protection during Prolonged Aortic Cross-clamping (대동맥 차단시 저온 산소화 심정지액이 심근보호에 미치는 영향)

  • Wang, Yeong-Pil;Lee, Hong-Gyun
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.759-770
    • /
    • 1985
  • This study was experimentally undertaken to evaluate the effect of hypothermic oxygenated cardioplegic solution on myocardial protection during prolonged aortic cross clamping under cardiopulmonary bypass. Dogs were divided into two groups control group [received hypothermic unoxygenated cardioplegic solution] and experimental group [received hypothermic oxygenated cardioplegic solution]. Coronary sinus effluent was obtained at once and 30, 60, 90 minutes after cross-clamping for the determination of pH, PCO2,PO2 and lactate level during the infusion of cardioplegic solution and myocardial biopsies were obtained after cessation of 90 minutes of aortic cross-clamping. The results obtained were as follows: 1. There was no significant differences in the pH and PCO2 between the oxygenated and unoxygenated cardioplegic solution but the PO2 of the oxygenated solution was 4 times greater than unoxygenated solution, and also the oxygenated solution had a significantly greater oxygen content [2.020.05 ml 02/min] and had much more oxygen delivery than unoxygenated solution. 2. The myocardial oxygen consumption and the myocardial oxygen extraction in oxygenated group were 1.63 ml 02/100 ml and 67.32% respectively, which was greater than those in unoxygenated group. 3. Regarding to pH and PCO2 of coronary sinus effluent, there was no significant differences between two groups in early period of infusion of cardioplegic solution, but the pH shifted to acidosis from 60 minutes, PCO2 increased from 90 minutes of aortic cross-clamping, and PO2 markedly decreased from 90 minutes of aortic cross-clamping in unoxygenated group. 4. The lactate concentration of coronary sinus effluent revealed relatively normal in both groups, but showed slight increase up to 27.54.56 mg/100 ml at 90 minutes of aortic cross-clamping in unoxygenated group. 5. On electron microscopic study, the ultrastructural integrity of myocardial cells in oxygenated group was well preserved within 90 minutes. Slight swelling and deformity of mitochondria, interfibrillar widening, and disarrangement of myofibrils were observed at 90 minutes after aortic cross-clamping in unoxygenated group. From these results, the use of hypothermic oxygenated cardioplegic solution seemed to be effective and better method for the preservation of ischemic myocardium during the prolonged aortic cross-clamping.

  • PDF

대기압 플라즈마로 폐 암세포(H460)와 폐 정상세포(L132) 처리시, OH radical density에 따른 Cell 변화 측정

  • Park, Dae-Hun;Kim, Yong-Hui;Sim, Geon-Bo;Baek, Gu-Yeon;Eom, Hwan-Seop;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.184.2-184.2
    • /
    • 2013
  • 대기압 플라즈마와 생체용액과의 상호작용은 Bio-medical 분야에서 주목 받고 있다. 대기압 플라즈마는 전자온도가 고온 플라즈마 보다 상대적으로 낮기 때문에 생체에 적용하기가 적합하다. 따라서 플라즈마가 세포에 미치는 영향을 관측하기 위해서 대기압 플라즈마를 이용하여 생체용액과의 반응을 살펴보고자 한다. Ar gas를 이용하여 플라즈마를 발생시켜 생체용액 표면을 처리하고 OES (Optical Emission Spectroscopy)을 이용해 방출 선을 조사했다. Ar 기체를 이용한 대기압 플라즈마를 사용하여 다른종류의 용액내의 OH Radical Density를 측정하였다. 용액으로는 DI (deionized) water 와 PBS (1x phosphate buffered saline)를 사용하였다. Ar gas를 200 sccm ($cm^3/min$) 으로 흐르게 하였을 때, DI water의 OH Radical Density 는 $4.33{\times}10^{16}cm^{-3}$ 으로 측정되었으며, 자외선 흡수분광법으로 측정한 완충용액인 PBS의 OH Radical Density 측정값은 $1.87{\times}10^{16}cm^{-3}$ 이다. 이런 특성을 기반으로, PBS 용액내의 H460 (Lung Cancer Cell) 와 L132 (Lung Normal Cell)을 깊이와 시간에 따라 대기압 플라즈마로 처리하여 cell의 변화를 보았다. 실험 각각의 조건은 깊이를 2 mm, 4 mm, 6 mm이며 시간은 10 sec, 30 sec, 60 sec 로 설정하였다. 표면으로부터의 깊이가 2 mm, 4 mm, 6 mm 일때 의 OH Radical Density는 각각 $1.87{\times}10^{16}cm^{-3}$, $0.5{\times}10^{16}cm^{-3}$, 0으로써 용액이 깊어질수록 OH Radical Density가 감소함을 볼 수 있다. OH radical density가 높은 2 mm 에서, 처리한 시간이 길어질수록 Cell 은 영향을 많이 받음을 관찰 할 수 있었다. H460 이 L132 보다 플라즈마에 영향을 많이 받음을 확인하였다. 특성변화를 알아보기 위하여 raman spectroscopy, flow cytometry, electron spin resonance로 측정한다.

  • PDF

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Young-Kyun;Chai, Jong-Seo;Kim, Yu-Seong;Lee, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor (SEM). 35 MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

A TiO2-Coated Reflective Layer Enhances the Sensitivity of a CsI:Tl Scintillator for X-ray Imaging Sensors

  • Kim, Youngju;Kim, Byoungwook;Kwon, Youngman;Kim, Jongyul;Kim, MyungSoo;Cho, Gyuseong;Jun, Hong Young;Thap, Tharoeun;Lee, Jinseok;Yoon, Kwon-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.256-260
    • /
    • 2014
  • Columnar-structured cesium iodide (CsI) scintillators doped with thallium (Tl) are frequently used as x-ray converters in medical and industrial imaging. In this study we investigated the imaging characteristics of CsI:Tl films with various reflective layers-aluminum (Al), chromium (Cr), and titanium dioxide ($TiO_2$) powder-coated on glass substrates. We used two effusion-cell sources in a thermal evaporator system to fabricate CsI:Tl films on substrates. The scintillators were observed via scanning electron microscopy (SEM), and scintillation characteristics were evaluated on the basis of the emission spectrum, light output, light response to x-ray dose, modulation transfer function (MTF), and x-ray images. Compared to control films without a reflective layer, CsI:Tl films with reflective layers showed better sensitivity and light collection efficiency, and the film with a $TiO_2$ reflective layer showed the best properties.

Surface analysis of metal clips of ceramic self-ligating brackets

  • Kim, Kyung Sook;Han, Se Jik;Lee, Tae-Hee;Park, Tae-Joon;Choi, Samjin;Kang, Yoon-Goo;Park, Ki-Ho
    • The korean journal of orthodontics
    • /
    • v.49 no.1
    • /
    • pp.12-20
    • /
    • 2019
  • Objective: The aim of this study was to analyze the surface composition, roughness, and relative friction of metal clips from various ceramic self-ligating brackets. Methods: Six kinds of brackets were examined. The control group (mC) consisted of interactive metal self-ligating brackets while the experimental group (CC, EC, MA, QK, and WA) consisted of interactive ceramic self-ligating brackets. Atomic force microscopy-lateral force microscopy and scanning electron microscopy-energy-dispersive X-ray spectroscopy were used to analyze the surface of each bracket clip. Results: All the clips in the experimental groups were coated with rhodium except for the QK clip. The results showed that the QK clip had the lowest average roughness on the outer surface, followed by the MA, EC, WA, and CC clips. However, the CC clip had the lowest average roughness on the inner surface, followed by the QK, WA, MA, and EC clips. The QK clip also had the lowest relative friction on the outer surface, followed by the MA, EC, CC, and WA clips. Likewise, the CC clip had the lowest relative friction on the inner surface, followed by the QK, WA, MA, and EC clips. Conclusions: The surface roughness and relative friction of the rhodium-coated clips were generally higher than those of the uncoated clips.

Sealing capability and marginal fit of titanium versus zirconia abutments with different connection designs

  • Sen, Nazmiye;Sermet, Ibrahim Bulent;Gurler, Nezahat
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2019
  • PURPOSE. Limited data is available regarding the differences for possible microleakage problems and fitting accuracy of zirconia versus titanium abutments with various connection designs. The purpose of this in vitro study was to investigate the effect of connection design and abutment material on the sealing capability and fitting accuracy of abutments. MATERIALS AND METHODS. A total of 42 abutments with different connection designs [internal conical (IC), internal tri-channel (IT), and external hexagonal (EH)] and abutment materials [titanium (Ti) and zirconia (Zr)] were evaluated. The inner parts of implants were inoculated with $0.7{\mu}L$ of polymicrobial culture (P. gingivalis, T. forsythia, T. denticola and F. nucleatum) and connected with their respective abutments under sterile conditions. The penetration of bacteria into the surrounding media was assessed by the visual evaluation of turbidity at each time point and the number of colony forming units (CFUs) was counted. The marginal gap at the implant- abutment interface (IAI) was measured by scanning electron microscope. The data sets were statistically analyzed using Kruskal-Wallis followed by Mann-Whitney U tests with the Bonferroni-Holm correction (${\alpha}=.05$). RESULTS. Statistically significant difference was found among the groups based on the results of leaked colonies (P<.05). The EH-Ti group characterized by an external hexagonal connection were less resistant to bacterial leakage than the groups EH-Zr, IT-Zr, IT-Ti, IC-Zr, and IC-Ti (P<.05). The marginal misfit (in ${\mu}m$) of the groups were in the range of 2.7-4.0 (IC-Zr), 1.8-5.3 (IC-Ti), 6.5-17.1 (IT-Zr), 5.4-12.0 (IT-Ti), 16.8-22.7 (EH-Zr), and 10.3-15.4 (EH-Ti). CONCLUSION. The sealing capability and marginal fit of abutments were affected by the type of abutment material and connection design.