• 제목/요약/키워드: Medical electron

검색결과 821건 처리시간 0.036초

Intracellular Electrical Stimulation on PC-12 Cells through Vertical Nanowire Electrode

  • Kim, Hyungsuk;Kim, Ilsoo;Lee, Jaehyung;Lee, Hye-young;Lee, Eungjang;Jeong, Du-Won;Kim, Ju-Jin;Choi, Heon-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.407-407
    • /
    • 2014
  • Nanotechnology, especially vertically grown silicon nanowires, has gotten great attentions in biology due to characteristics of one dimensional nanostructure; controllable synthetic structure such as lengths, diameters, densities. Silicon nanowires are promising materials as nanoelectrodes due to their highly complementary metal-oxide-semiconductor (CMOS) - and bio-compatibility. Silicon nanowires are so intoxicated that are effective for bio molecular delivery and electrical stimulation. Vertical nanowires with integrated Au tips were fabricated for electrical intracellular interfacing with PC-12 cells. We have made synthesized two types of nanowire devices; one is multi-nanowires electrode for bio molecular sensing and electrical stimulation, and the other is single-nanowires electrode respectively. Here, we demonstrate that differentiation of Nerve Growth Factor (NGF) treated PC-12 cells can be promoted depending on different magnitudes of electrical stimulation and density of Si NWs. It was fabricated by both bottom-up and top-down approaches using low pressure chemical vapor deposition (LPCVD) with high vacuuming environment to electrically stimulate PC-12 cells. The effects of electrical stimulation with NGF on the morphological differentiation are observed by Scanning Electron Microscopy (SEM), and it induces neural outgrowth. Moreover, the cell cytosol can be dyed selectively depending on the degree of differentiation along with fluorescence microscopy measurement. Vertically grown silicon nanowires have further expected advantages in case of single nanowire fabrication, and will be able to expand its characteristics to diverse applications.

  • PDF

Comparative Study of Seeding and Culture Methods to Vascular Smooth Muscle Cells on Biodegradable Scaffold

  • Kim, Dong-Ik;Park, Hee-Jung;Eo, Hyun-Seoun;Suh, Soo-Won;Hong, Ji-Hee;Lee, Min-Jae;Kim, Jong-Sung;Jang, In-Sung;Kim, Byung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.707-714
    • /
    • 2004
  • How to improve the cell culture method on scaffolds is important in the tissue engineering fileld. In this study, we optimized seeding and culture methods to vascular smooth muscle cells (VSMCs) on biodegradable polymer scaffold. The primary culture of VSMCs obtained from canine external jugular vein was accomplished by applying the explant-derived method. The primary cultured VSMCs were seeded into scaffolds and then cultured by using various different methods; static or dynamic seeding, static or dynamic culture. The difference in proliferative response of VSMCs was analyzed with an alamar blue assay. Cell-polymer construct was examined by histochemical method and scanning electron microscopy. Mesh type scaffold ($10 \times 10 \times0.4 mm$) was made of polyglycolic acid (PGA) suture thread. The PGA mesh type scaffold was 45% in porosity, and 0.03 g in weight. The primary cultured VSMCs were confirmed with immunohistochemical staining using monoclonal anti-$\alpha$-smooth muscle actin. The density and distribution of proliferated VSMCs within the scaffold and cellular adherence on the surface of the scaffold showed better results in the static seeding condition than in the dynamic condition. Under the same condition of seeding method as the static condition, the dynamic culture condition showed enhanced proliferation rates of the VSMCs when compared to the static culture condition. In conclusion, to improve the VSMCs proliferation in vitro, static seeding is better than the dynamic condition. In the culture condition, however, culture under the dynamic status is better than the static condition. This was a pilot study to manufacture artificial vascular vessel by tissue engineering.

Possibility of Wound Dressing Using Poly(L-leucine)/poly(ethylene glycol)/poly(L-leucine) Triblock Copolymer

  • 김현정;조종수
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.249-254
    • /
    • 1997
  • ABA-type block copolymers composed of poly(L-leucine)(PLL) as the A component and poly(ethylene glycol)(PEG) as the B component were synthesized by ring-opening polymerization of L-leucine N-carboxyanhydride initiated by primary amino group located at both ends of PEG chain. A silver sulfadiazine(AgSD)-impregnated wound dressing of sponge-type was prepared by the lyophilization method. Morphological structure of this wound dressing obtained by scanning electron microscopy(SEM) was composed of a dense skin layer and a macroporous inner sponge layer. Equilibrium water content(EWC) of wound dressing was above 10%. It increased with an increased of PEO content in the block copolymer due to the hydrophilicity of PEO. AgSD release from AgSD- impregnated wound dressing in PBS buffer(pH=7.4) was dependent on PEG composition in the block copolymer. Therefore, EWC and release of AgSD can be control by PEG composition. Antibacterial capacity of AgSD-impregnated wound dressing was examined in agar plate against Pseudmonas aeruginosa and Stapplococus aruous. Cytotoxicity of the wound dressing was evaluated by studing mouse skin fibroblast(L929). From the behavior of antimicrobial releasing and the investigation of the suppression of bacterial proliferation, it was supposed that the wound dressing containing antibiotics could protect the wound surfaces from bacterial invasion to suppress the bacterial proliferation effectively. In cytotoxicity observation, cellular damage was reduced by the control led released of AgSD from the LEL sponge matrix of AgSD-medicated wound dressing. In vivo test, granulous tissue formation and wound contraction or the AgSD and DHEA impregnated wound dressing were aster than any other groups.

  • PDF

국내 분리 토끼출혈병 바이러스(RHDVa)를 감염시킨 토끼 간장에서의 경시적인 초미세구조 변화와 apoptosis (Sequential hepatic ultrastructural changes and apoptosis in rabbits experimentally infected with Korean strain of rabbit hemorrhagic disease virus (RHDVa))

  • 박중원;전지은;박은정;김한;이명헌;황의경;김재훈;이중복;우계형
    • 대한수의학회지
    • /
    • 제53권1호
    • /
    • pp.11-17
    • /
    • 2013
  • In this study, to understand the pathogenesis of new rabbit hemorrhagic disease virus (RHDVa) serotype, we carried out to administrate RHDVa to rabbits, and to examine sequential electron microscopic changes and relationship between pathogenesis and apoptosis. TUNEL-positive cells began to be observed from 24 hours after inoculation (HAI) and the number of positive cells was slightly increased with the course of time. Whereas marked increase of positive cells was seen in the liver from the rabbits died acutely. Typical viral particles with cup-like projections and a diameter of 30~40 nm were detected in homogenized liver samples and tissues at 36 and 48, and 48 HAI, respectively. Ultrastructurally, glycogen deposition was observed from the first stage of hepatocellular degeneration by RHDVa infection and then, swelling and disruption of cristae of mitochondria by viral particles, swelling of smooth endoplasmic reticulum, vacuoles and vesicles were detected. Condensation, margination and fragmentation of chromatin were observed in degenerative hepatocytes at 36 and 48 HAI, indicating apoptotic bodies. These data offer that hepatocytic apoptosis by RHDV infection could be closely related with mitochondrial impairment in the hepatocytes.

Diagnostic Studies of Plasmas in Saline Solutions: the Frequency Effects and the Electrode Erosion Mechanism

  • Hsu, Cheng-Che
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.16-16
    • /
    • 2011
  • Plasmas in saline solutions receive considerable attention in recent years. How the operating parameters influence the plasma characteristics and how the electrode erosion occurs have been topics that require further study. In the first part of this talk, the effect of the frequency on the plasmas characteristics in saline solution driven by 50~1000 Hz AC power will be presented. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, one mm-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in the frequency, it shows the jetting mode, in which many smaller bubbles are continuous formed and jetted away from the electrode surface. Multiple mechanisms that are potentially responsible to such a change in bubble dynamics have been proposed and the dominant mechanism is identified. From the Stark broadening of the hydrogen optical emission line, electron densities in both modes are estimated. It shows clearly that the driving frequency greatly influences the bubble dynamics, which in turn alters the plasma behavior. In the second part, the study of the erosion of a tungsten electrode immersed in saline solution under conditions suitable for bio-medical applications is presented. The electrode is immersed in 0.1 M saline solution and is positively or negatively biased using a DC power source up to 600 V. It is identified that when the electrode is positively biased, erosion by the surface electrolytic oxidation is the dominant mechanism with an applied voltage below 150 V. An increase in the applied voltage leads to the formation of the plasma and the damage by the plasma and the thermal effect becomes more prominent. The formation of the gas film at the electrode surface leads to the formation of the plasma and hinders the electrolytic erosion. In the negatively-biased electrode, no electrolytic oxidation is seen and the damage is mostly likely due to the plasma erosion and the thermal effect.

  • PDF

돼지 황체에서 황체용해와 대식세포와의 관계 (A Morphological Study on the Macrophages During Luteolysis in the Pig)

  • 김원식;한승로;손성경;박창식;양윤석
    • Journal of Animal Science and Technology
    • /
    • 제48권2호
    • /
    • pp.191-202
    • /
    • 2006
  • 황체내에서 대식세포는 자신이 분비하는 사이토카인을 통해 황체형성기에는 황체형성세포들의 증식과 성장에 관여하고 황체용해시기에는 황체세포들의 아포토시스와 그들의 제거에 직간접적으로 관여하는 것으로 알려져 있다. 본 실험에서는 돼지에서 최대성숙황체 시기와 황체의 용해에 따른 대식세포의 역할과 작용기전 등을 알아보기 위해 면역조직화학적 및 투과전자현미경적 방법으로 황체의 형태학적 변화를 관찰하였다. 그 결과 돼지에서는 황체용해시에 아포토시스 소체들을 포식하는 대식세포들이 관찰되지 않았고, 최대 황체시기와 황체용해시기에 대식세포들은 미세구조와 그것들이 위치하는 부위가 각기 다른 2가지 아형들이 관찰되었다. 이같은 결과로 볼 때, 돼지에서는 황체용해시 아포토시스 소체들이 대식세포의 포식작용에 의하지 않고 자체 혈관을 통해 제거되는 것으로 보이며, 황체에는 각 시기별로 각기 다른 임무를 띤 아형의 대식세포들이 혈류로부터 들어와 시기특이적으로 작용하는 것으로 추정된다.

MWCNT, silver nanoparticles, CuBTC를 사용한 염소 이온 센서 합성

  • 곽병관;박수빈;유봉영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.101-101
    • /
    • 2018
  • Quantitative measurement of chloride ion concentration has an important role in various fields of electrochemistry, medical science, biology, metallurgy, architecture, etc. Among them, its importance of architecture is ever-growing due to unexpected degradations of building structure. These situations are caused by corrosion of reinforced concrete (RC) structure of buildings. And chloride ions are the most powerful factors of RC structure corrosion. Therefore, precise inspection of chloride ion concentration must be required to increase the accuracy of durability monitoring. Multi-walled Carbon nanotubes (MWCNTs) have high chemical resistivity, large surface area and superior electrical property. Thus, it is suitable for the channels of electrical signals made by the sensor. Silver nanoparticles were added to giving the sensing property. CuBTC, one of the metal organic frameworks (MOFs), was employed as a material to improve the sensing property because of its hydrophilicity and high surface area to volume ratio. In this study, sensing element was synthesized by various chemical reaction procedures. At first, MWCNTs were functionalized with a mixture of sulfuric acid and nitric acid because of enhancement of solubility in solution and surface activation. And functionalized MWCNTs, silver nanoparticles, and CuBTC were synthesized on PTFE membrane, one by one. Electroless deposition process was performed to deposit the silver nanoparticles. CuBTC was produced by room temperature synthesis. Surface morphology and composition analysis were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), respectively. X-ray photoelectron spectroscopy (XPS) was also performed to confirm the existence of sensing materials. The electrical properties of sensor were measured by semiconductor analyzer. The chloride ion sensing characteristics were confirmed with the variation of the resistance at 1 V.

  • PDF

반코마이신 내성 Staphylococcus aureus 억제 물질 생산 Streptomyces sp.의 분리 및 동정 (Isolation and Identification of Streptomyces sp. Producing Anti-vancomycin Resistant Staphylococcus aureus Substance)

  • 오세택;이준재;이지연;김진규;양시용;김양수;송민동
    • 한국미생물·생명공학회지
    • /
    • 제33권2호
    • /
    • pp.90-95
    • /
    • 2005
  • An Actinomycetes producing an anti-VRSA (vancomycin-resistant Staphylococcus aureus) substance was isolated from soil. The cultural, morphological, physiological and phylogenetic analyses of an isolated strain were investigated for identification. Cultural characteristics based on ISP (International Streptomyces Project) were as follows: white aerial mycelium, yellow reverse side, and good growth on various medium. Also, the isolate did not produce the soluble pigment. Morphological characteristics were showed cylindrical spore chain and smooth spore surface by SEM (Scanning Electron Microscope). Physiological characteristics were showed LL-type by DAP isomer analysis and detected glycine, glutamic acid and alanine. A phylogenetic analysis of the 16S rDNA provided a clue that the isolated strain was actually a member of the genus Streptomyces, because the determined sequence exhibited a higher homology with Streptomyces echinatus. The isolate was identified to be a genus of Streptomyces sp.. The optimal culture conditions for the maximum production of anti-VRSA substance by Streptomyces sp. were attained in a culture medium composed of $2.0\%$ (w/v) glucose, and $0.4\%$ (w/v) yeast extract. The anti-VRSA substance was highly produced after 5 days of culture. Optimal pH and temperature conditions for the production of anti-VRSA substance were pH 7.0 and $28^{\circ}C$, respectively.

시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동 (Electrical Property of Immobilized SWNTs Bundle as Bridge between Electrodes in Nanobiosensor Depending on Solvent Characteristics)

  • 이진영;조재훈;박철환
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.115-120
    • /
    • 2017
  • 현재 세계적인 이슈가 되고 있는 나노과학과 기술은 탄소나노튜브(CNTs)를 기반으로 한 바이오센서 성능 향상에 주력하고 있다. 다양한 기능성을 가진 CNTs는 높은 안정성과 바이오 수용체와 같은 생체물질과의 높은 적합성으로 이를 이용한 바이오 전극 기술에 힘입어 의학, 식품 및 환경에서 이슈가 되는 물질들을 검출하기 위한 산업적 응용 연구가 주목받고 있다. 본 연구에서는 이러한 CNTs를 이용한 전기화학적 바이오센서에 있어서 시료가 액체 상태로 검출이 예상되는데 그 시료의 화학적 특성에 따른 금 전극 사이에 고정화된 CNTs의 전자전달현상을 조사하였다. 그 결과, 시료가 극성인 경우와 무극성인 경우 고정화된 CNTs의 전자전달 현상이 다르게 나타났으며, 극성의 세기가 증가할수록 전자의 이동에 방해를 받는 것으로 확인되었다. 이는 CNTs의 양끝에 존재하는 극성 작용기와의 상호작용에 의한 것으로서 센서 디바이스 전체를 시료 용액에 침투시켜 전자이동을 관찰한 결과와 달리 안정적으로 저항값을 나타내는 것으로 확인되었다. 향후 민감도가 높은 CNTs 기반 나노바이오센서 개발 시 시료의 효과적인 전처리 공정에서 이러한 용매의 극성을 고려한 최적화 연구가 필요하다.

지르코니아의 소결 후 특성 (Surface Characteristics of Ground and Post-Sintered Zirconia)

  • 김민정;김임선;최병환;김원기
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.157-163
    • /
    • 2016
  • Purpose: It is to compare and evaluate the change of the wear rate and phase variation of the Zirconia before and after the sintering after the grinding by a high speed equipment manufactured for the Zirconia. Methods: The specimen of the sintered Zirconia was manufactured as size of $15mm{\times}15mm{\times}2mm$. The grinding has been applied to each of all pieces of each test groups for a minute fit for each condition at same speed of 50,000 rpm by a diamond bur at high speed handpiece with injection of the air and water. For the observation of the surface before and after the sintering of the each test piece, the cross section of it was observed as 100 magnification by a scanning electron microscope after it was coated by PT, and the diffraction analysis was performed by XDR to compare the crystal phase of the Zirconia. The average surface roughness value of all specimens were evaluated. The wear test was performed at room temperature by applying a load of 1kg for 120,000 cycles for the chewing period 6 months. Wear was analyzed for the enamel cusps by measurement of the vertical substance loss with a laser scanner. Conclusion: The phase variation from the tetragonal phase to the monoclinic phase was confirmed in the test group of the pre-sintered Zirconia after the grinding, and the value of the surface roughness and the wear rate was increased in experimental group.