• Title/Summary/Keyword: Medical Polymers

Search Result 104, Processing Time 0.026 seconds

Synthesis and Physical Properties of Biodegradable Polymers -Poly (glycine-co-lactic acid) and Poly (glycine-co-glycolic acid)- (생체분해성 고분자의 합성 및 물성에 관한 연구 -Poly (glycine-co-lactic acid) 와 Poly (glycine-co-glycolic acid)-)

  • 성용길;김정엽
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 1988
  • Synthetic biodegradable polymers are of great interest for biomedical applications such as surgical sutures and drug delivery systems. The copolymers of ${alpha}-amino$ acids and ${alpha}-hydroxy$ matrices having the required permeability for drugs. Poly (glycine.co-lactic acid) and poly (glycine-co-glycolic acid) have been synthesized by ring-opening polymerization. Morpholine-2, 5-diane, lactide, and glycolid have been used as starting materials for polydepsipeptides. The synthesized monomers and copoylmers have been identified by NMR and FT-lR spectrophotometer. The thermal properties and glass transition temperatures ($T_g$) of the copolymers have been measured by differential scanning calorimetry. The $T_g$ values of poly (glycine-co-lactic acid) and poly (glycine co.glycolic acid) are increased with increasing mole fraction of morpholine-2, 5-dione in the copolymers.

  • PDF

Application of NMR Microscopy for the Study of the Swelling Effect in Biopolymers (생체고분자의 팽윤현상연구를 위한 핵자기공명 현미영상법의 응용)

  • 이동훈;김승수
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 1997
  • Novel measurement method has been performed for the noninvasive study of the swelling effect detected in hydrophilic polymers using Magnetic Resonance Microscopy. iN NMR images were acquired to measure geometric changes due to the swelling effect occurred in the polymer specimens. In addition to the geometric changes, the water ingress process was visualized noninvgsively. The measurement method performed .in the present study utilized some of NMR's valuable properties, both noninvasiveness and parameter selectivity. It is believed that the method used in the present study may be applicable to the study of biopolymers in which noninvasiveness is particularly important.

  • PDF

Myocardial tissue engineering using electrospun nanofiber composites

  • Kim, Pyung-Hwan;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.26-36
    • /
    • 2016
  • Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]

Protective System from Medical Needle-sticks. Part I: Background and System Development

  • Turner, LaDawnya C.;Seyam, Abdelfattah M.;Banks-Lee, Pamela
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.54-58
    • /
    • 2003
  • Previous research on healthcare workers’ protection has concentrated on liquid barrier protection by providing impermeable personal articles such as latex gloves. This property is of high importance but since most blood-borne pathogen transmissions in the healthcare industry are caused by needle-stick injuries, protection from sharp invasive instruments should also be of high concern. And since latex and alike provide no protection against needle-stick injuries, new protective systems need to be developed and evaluated. This part of the study provides a review regarding the current practice of protection and the serious problems that arise from needle-flick injuries. Additionally, the development of new protective system is described. In part II of the study, evaluation of the new system will be provided.

Temporal and subcellular distributions of Cy5.5-labeled hyaluronic acid nanoparticles in mouse organs during 28 days as a drug carrier

  • Lin, Chunmei;Kim, Saet Byeol;Yon, Jung-Min;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.4
    • /
    • pp.215-222
    • /
    • 2017
  • Temporal and subcellular distributions of hyaluronic acid (HA) as a degradable nanoparticle (NP) in animals were investigated to determine if HA-NP could be utilized as an appropriate drug delivery system. After mice were intravenously injected with 5 mg/kg of Cy5.5-labeled HA-NP sized 350-400 nm or larger HA-polymers, the fluorescence intensity was measured in all homogenized organs from 0.5 h to 28 days. HA-NP was greatly detected in spleen, liver and kidney until day 28, while it was maintained at low levels in other organs. HA-polymer was observed at low levels in all organs. HA-NP quantities in spleen and liver were reduced until day 3, but increased sharply between days 3 and 7, then decreased again, while their HA-polymers were maintained at low levels until day 28. In kidneys, both HA-NP and HA-polymer showed high levels after 0.5 h of administration, but steadily decreased until day 28. According to ultrastructural analyses, HA-NP was engulfed in Kupffer cells of liver and macrophages of spleen and kidney at day 1 and was accumulated in the cytoplasm of kidney tubular cells at day 7. Overall, these findings suggest that HA-NP could be considered a desirable drug carrier in the liver, kidney, or spleen.

Impact of Amino-Acid Coating on the Synthesis and Characteristics of Iron-Oxide Nanoparticles (IONs)

  • Ebrahiminezhad, Alireza;Ghasemi, Younes;Rasoul-Amini, Sara;Barar, Jaleh;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3957-3962
    • /
    • 2012
  • Iron-oxide nanoparticles (IONs) with biocompatible coatings are the only nanostructural materials which have been approved by the FDA for clinical use. Common biocompatible coatings such as hydrocarbons, polymers, and silica have profound influences on critical characteristics of IONs. Recently, amino acids were introduced as a novel biocompatible coating. In the present study, the effects of amino acids on IONs synthesis and characteristics have been evaluated. Magnetite nanoparticles with L-arginine and L-lysine coatings were synthesised by a coprecipitation reaction in aqueous solvent and their characteristics were compared with naked magnetite nanoparticles. The results showed that amino acids can be a perfect coating for IONs and would increase particle stability without any significant effects on the critical properties of nanoparticles such as particle size and magnetization saturation value.

The Influence of E-beam Irradiation on POLY(ETHER-BLOCK-AMIDE) (PEBA, Pebax) (전자 빔 조사후 PEBA (Poly Ether Block Amide)의 구조 및 기계적 특성 변화)

  • Shin, Sukyoung;Cho, SangGyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.205-209
    • /
    • 2014
  • Medical polymers require sterilization and must be able to maintain material properties for a specified shelf life. Sterilization can be achieved by using gamma or e-beam exposure. In this study, accelerated aging tests of poly(ether-block-amide) (PEBA) copolymer samples is presented. PEBA copolymer samples with different polyether content that result in Shore hardness of 35D to 72D, were sterilized using e-beam radiation followed by accelerated aging at $55^{\circ}C$. E-beam sterilization effect on molecular weight and mechanical property has performed and analyzed. The average molecular weight significantly reduced as a result of ageing. The enlarged proportion of low molecular weight chains in the aged samples is consistent with the generation of degradation products produced by oxidative chain scission. Also E-beam materials have shown decreased tensile strength and elongation. Overall, this study demonstrated that the medical grade PEBA was significantly affected by radiation exposure over aging time, particularly at high irradiation doses. For medical use in case of radiation sterilization required, it is recommended to avoid Pebax material. If Pebax material must be in use for medical device, recommend to use alternate sterilization method such as Ethylene Oxide sterilization.

Preparation and applications of electrically conducting fabrics

  • Lee, Jun-Young;Jinsoo Joo;Lim, Jeong-Ok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.25-26
    • /
    • 2003
  • Electrically conducting polymers such as polypyrrole(PPy) or poly(3,4-ethylene dioxythiophene)(PEDOT) were sequentially polymerized chemically and electrochemically on various kinds of woven fabrics, giving rise to the fabrics with high electrical conductivity. The specific volume resistivity of the fabric prepared in this study was extremely low as 0.2 $\Omega$-cm. We figured out the electrically conducting fabrics were practically useful for many applications such as an EMI shielding material, a flexible surface heating element or a strain sensor for large deformation.

  • PDF

PHYSICAL PROPERTIES OF HIGHLY-ORIENTED POLYVINYLALCOHOL FIBER

  • Kim Byeong-Cheol;Im Seung-Sun;Kim Seung-Gyu;Han Jeong-Ryeon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.223-226
    • /
    • 1998
  • Polyvinylalcohol (PVA) is a crystalline polymer, capable of hydrogen bonding, which makes the polymer useful for many industrial applications. production of high strength fibers, medical substitutes, adhesives, and so on[1], Specially, among fiber-forming polymers, PVA has the second highest crystal modulus and extreme strength after polyethylene because the polymer chain can take a planar zig-zag conformation. (omitted)

  • PDF

Biocompatibility of Biodegradable Films by Natural Polymers (천연고분자 분해성 필름의 생체적합성 연구)

  • Hwang, Sung Kwy;Lee, Ki Chang;Rhim, Kook Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.939-943
    • /
    • 1999
  • Recently there has been an explosion of interest in the topic of biodegradable polymers for medical applications. In this study, films were prepared by solution casting method using natural polymers (xanthan, locust bean, guar gum, chitosan and algin) as biomaterials. Biocompatibility of films prepared from natural polymer as a skin implant was evaluated. These biodegradable films were subcutaneously implanted in the back of rats and their biodegradability was investigated by the evaluation of changes in structure, film weight and hematology as a function of time for the biotransformation. The result of rats test showed that locust bean and guar gum induced some suspects of non-biocompatibility in the tissue by foreign body reaction 24 and 48 hrs after implantation. These results showed the potential of partial biodegradable films prepared from natural polymer for ideal skin biomaterials at short period.

  • PDF