• Title/Summary/Keyword: Medical Image Visualization

Search Result 111, Processing Time 0.024 seconds

The Influence of Hemosialysis to the Face Color of Patients in End Stage Renal Disease (말기신부전 환자의 혈액투석 치료가 안면 색에 미치는 영향)

  • Lee, Se-Hwan;Cho, Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.437-444
    • /
    • 2010
  • In this paper, we propose a method of analysing the relation between the patient's face color and his(her) kidney disease using image processing technology. This method is based on the ocular inspection which is one of the most famous diagnosis methods used in the oriental medical system. The way of processing and analysing the face image, which is for visualization and objectification of the color difference, is included. The objects are selected from the patients who suffer the kidney disease and use the hemodialyzer. Their facial images and clinical data are collected. From these data, we propose a hypothesis that the color of the patient's face is changed according to the patient's kidney state. At the same time, we present two algorithms of extracting the specific part of face which can identify the state of the patient's kidney and tracing the history of the color's change. This proposed method is evaluated through the practical experiments and their analysis.

Ambient Occlusion Volume Rendering using Multi-Range Statistics (다중 영역 통계량을 이용한 환경-광 가림 볼륨 가시화)

  • Nam, Jinhyun;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • This study presents a volume rendering method using ambient occlusion which is one of global illumination methods. By considering the volume density distribution as normal distribution, ambient occlusion can be calculated at real-time speed regardless of modification of opacity transfer function. We calculate and store the averages and standard deviations of densities in a block centered at each voxel in pre-processing time. In rendering process, we determine the illumination value by estimating the nearby opacity. We generalized theoretical model and generated better quality images improving our previous research. In detail, various shapes of transfer function can be used due to the proposed equation model. Moreover, we introduced a multi-range model to give nearer objects more weight. As the result, more realistic volume rendering image can be generated at real-time speed by mixing local and ambient occlusion shading.

Mobile Volume Rendering System for Client-Server Environment (클라이언트 서버 기반 모바일 볼륨 가시화 시스템)

  • Lee, Woongkyu;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.17-26
    • /
    • 2015
  • In this paper, we explain a volume rendering system for client-server environment. A single GPU-equipped PC works as a server which is based on the ideas that only a few concurrent users use a volume rendering system in a small hospital. As the clients, we used Android mobile devices such as smart phones. User events are transformed to rendering requests by the client application. When the server receives a rendering request, it renders the volume using the GPU. The rendered image is compressed to JPEG or PNG format so that we can save network bandwidth and reduce transfer time. In addition, we perform an event pruning method while a user is dragging the touch to enhance latency. The server compensates the pruning by interpolating the touch positions. As the result, real-time volume rendering is possible for 5 concurrent users on single GPU-equipped commodity hardware.

Knee Articular Cartilage Segmentation with Priors Based On Gaussian Kernel Level Set Algorithm (사전정보를 이용한 가우시안 커널 레벨 셋 알고리즘 기반 무릎 관절 연골 자기공명영상 분할기법)

  • Ahn, Chunsoo;Bui, Toan;Lee, Yong-Woo;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.490-496
    • /
    • 2014
  • The thickness of knee joint cartilage causes most diseases of knee. Therefore, an articular cartilage segmentation of knee magnetic resonance imaging (MRI) is required to diagnose a knee diagnosis correctly. In particular, fully automatic segmentation method of knee joint cartilage enables an effective diagnosis of knee disease. In this paper, we analyze a well-known level-set based segmentation method in brain MRI, and apply that method to knee MRI with solving some problems from different image characteristics. The proposed method, a fully automatic segmentation in whole process, enables to process faster than previous semi-automatic segmentation methods. Also it can make a three-dimension visualization which provides a specialist with an assistance for the diagnosis of knee disease. In addition, the proposed method provides more accurate results than the existing methods of articular cartilage segmentation in knee MRI through experiments.

Development of Respiratory Motion Reduction Device System (RMRDs) for Radiotherapy in Moving Tumor: Construction of RMRDs and Patient Setup Verification Program

  • Lee, Suk;Chu, Sung-Sil;Lee, Sei-Byung;Jino Bak;Cho, Kwang-Hwan;Kwon, Soo-Il;Jinsil Seong;Lee, Chang-Geol;Suh, Chang-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.86-89
    • /
    • 2002
  • The purpose is to develop a system to reduce the organ movement from the respiration during the 3DCRT or IMRT. This research reports the experience of utilizing personally developed system for mobile tumors. The patients clinical database was structured for 10 mobile tumors and patient setup error measurement and immobilization device effects were investigated. The RMRD system is composed of the respiratory motion reduction device utilized in prone position and abdominal strip device(ASD) utilized in the supine position, and the analysis program, which enables the analysis on patients setup reproducibility. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the normal tissue volume, field margins and dose volume histogram(DVH) using fluoroscopy and CT images. And, reproducibility of patients setup verify by utilization of digital images. When patients breathed freely, average movement of diaphragm was 1.2 cm in prone position in contrast to 1.6 cm in supine position. In prone position, difference in diaphragm movement with and without RMRDs was 0.5 cm and 1.2 cm, respectively, showing that PTV margins could be reduced to as much as 0.7 cm. With RMRDs, volume of the irradiated normal tissue (lung, liver) reduced up to 20 % in DVH analysis. Also by obtaining the digital image, reproducibility of patients setup verify by visualization using the real-time image acquisition, leading to practical utilization of our software. Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

A Study on survey of practical applications with the medical image data: Visible Korean Human and Digital Korean (한국인의 인체 영상 데이터에 대한 활용 사례 연구)

  • Kim, dae-jung;Ahn, sung-soo;Park, hyung-seon;Lee, Seung-bock
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.401-404
    • /
    • 2007
  • Recently, researches on human modeling and visualization are being done in medical, educational field and clinical treatment. As human configurations, however, are different among races and ethnic people, it is necessary to construct standard Korean human model according to Korean standard configuration, age, and sex etc. KISTI started building the Visible Korean Human Database in 2000 and it has provided the Digital Korean Database built in 2003 for users in university, research institute. As the utilization of the Human Data was insignificant and the majority fields that used the data were in research, we investigate application of data, other utilization method, and current research status to further and boost use of the Human data in many other fields.

  • PDF

A Double Z-buffer Antialiasing Method for Voxelized Implicit Surfaces (복셀로 표현된 임플리시트 곡면을 위한 시프트(shifted) 더블 Z-버퍼 앤티 앨리어싱)

  • 김학란;박화진
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.44-53
    • /
    • 2004
  • This paper aims at presenting high quality at low resolution apply by a new antialiasing method for voxelized implicit surfaces. Implicit surfaces create a unique type of 3D-modeling. Some use of implicit surfaces are scientific and medical visualization, animation, medical simulation and interactive modeling. One of previous antialiasing methods for implicit surfaces presented by raytracing or texture mapping is making use of a stochastic sampling. But this method requires more calculation time and costs which is caused by complicated and difficult implicit functions. In the meanwhile, voxelized implicit surfaces generally use high resolution for good quality images but it costs to generate. In order to this problem, this paper suggests a shifted double Z-buffer which is very simple, more efficient and easy. Tn addition, there are applied box-filter and tent-filter to the double Z-buffer antialiasing method for better images. For results this method generate high quality image and it is easy to apply to various filters and is able to extend to multi Z-buffer.

  • PDF

Susceptibility Weighted Imaging of the Cervical Spinal Cord with Compensation of Respiratory-Induced Artifact

  • Lee, Hongpyo;Nam, Yoonho;Gho, Sung-Min;Han, Dongyeob;Kim, Eung Yeop;Lee, Sheen-Woo;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.209-217
    • /
    • 2018
  • Purpose: The objective of this study was to obtain improved susceptibility weighted images (SWI) of the cervical spinal cord using respiratory-induced artifact compensation. Materials and Methods: The artifact from $B_0$ fluctuations by respiration could be compensated using a double navigator echo approach. The two navigators were inserted in an SWI sequence before and after the image readouts. The $B_0$ fluctuation was measured by each navigator echoes, and the inverse of the fluctuation was applied to eliminate the artifact from fluctuation. The degree of compensation was quantified using a quality index (QI) term for compensated imaging using each navigator. Also, the effect of compensation was analyzed according to the position of the spinal cord using QI values. Results: Compensation using navigator echo gave the improved visualization of SWI in cervical spinal cord compared to non-compensated images. Before compensation, images were influenced by artificial noise from motion in both the superior (QI = 0.031) and inferior (QI = 0.043) regions. In most parts of the superior regions, the second navigator resulted in better quality (QI = 0.024, P < 0.01) compared to the first navigator, but in the inferior regions the first navigator showed better quality (QI = 0.033, P < 0.01) after correction. Conclusion: Motion compensation using a double navigator method can increase the improvement of the SWI in the cervical spinal cord. The proposed method makes SWI a useful tool for the diagnosis of spinal cord injury by reducing respiratory-induced artifact.

Multimodal Brain Image Registration based on Surface Distance and Surface Curvature Optimization (표면거리 및 표면곡률 최적화 기반 다중모달리티 뇌영상 정합)

  • Park Ji-Young;Choi Yoo-Joo;Kim Min-Jeong;Tae Woo-Suk;Hong Seung-Bong;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.5
    • /
    • pp.391-400
    • /
    • 2004
  • Within multimodal medical image registration techniques, which correlate different images and Provide integrated information, surface registration methods generally minimize the surface distance between two modalities. However, the features of two modalities acquired from one subject are similar. So, it can improve the accuracy of registration result to match two images based on optimization of both surface distance and shape feature. This research proposes a registration method which optimizes surface distance and surface curvature of two brain modalities. The registration process has two steps. First, surface information is extracted from the reference images and the test images. Next, the optimization process is performed. In the former step, the surface boundaries of regions of interest are extracted from the two modalities. And for the boundary of reference volume image, distance map and curvature map are generated. In the optimization step, a transformation minimizing both surface distance and surface curvature difference is determined by a cost function referring to the distance map and curvature map. The applying of the result transformation makes test volume be registered to reference volume. The suggested cost function makes possible a more robust and accurate registration result than that of the cost function using the surface distance only. Also, this research provides an efficient means for image analysis through volume visualization of the registration result.

Patients Setup Verification Tool for RT (PSVTS) : DRR, Simulation, Portal and Digital images (방사선치료 시 환자자세 검증을 위한 분석용 도구 개발)

  • Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.100-106
    • /
    • 2003
  • Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.