• 제목/요약/키워드: Medical Image Registration

검색결과 116건 처리시간 0.023초

Deformable Registration for MRI Medical Image

  • Li, Binglu;Kim, YoungSeop;Lee, Yong-Hwan
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.63-66
    • /
    • 2019
  • Due to the development of medical imaging technology, different imaging technologies provide a large amount of effective information. However, different imaging method caused the limitations of information integrity by using single type of image. Combining different image together so that doctor can obtain the information from medical image comprehensively. Image registration algorithm based on mutual information has become one of the hotspots in the field of image registration with its high registration accuracy and wide applicability. Because the information theory-based registration technology is not dependent on the gray value difference of the image, and it is very suitable for multimodal medical image registration. However, the method based on mutual information has a robustness problem. The essential reason is that the mutual information itself is not have enough information between the pixel pairs, so that the mutual information is unstable during the registration process. A large number of local extreme values are generated, which finally cause mismatch. In order to overcome the shortages of mutual information registration method, this paper proposes a registration method combined with image spatial structure information and mutual information.

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.

Image Registration in Medical Applications

  • Hong, Helen
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권2호
    • /
    • pp.62-66
    • /
    • 2014
  • Image registration is the process for finding the correct geometrical transformation that brings one image in precise spatial correspondence with another image. There are limitations on the visualization of simple overlay between two different modality images because two different modality images have different anatomical information, resolution, and viewpoint. In this paper, various image registration methods and their applications are introduced. With the recent advance of medical imaging device, image registration is used actively in diagnosis support, treatment planning, surgery guidance and monitoring the disease progression.

Multimodality and Non-rigid Registration of MRI' Brain Image

  • Li, Binglu;Kim, YoungSeop
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.102-104
    • /
    • 2019
  • Registering different kinds of clinical images widely used in diagnostic and surgery planning. However, cause of tumor growth or effected by gravity, human tissue has plenty of non-rigid deformation with clinically. Non-rigid registration allows the mapping of straight lines to curves. Therefore, such local deformation makes registration more complicated. In this work, we mainly introduce intra-subject, inter-modality registration. This paper mainly studies the nonlinear registration method of 2D medical image registration. The general medical image registration algorithm requires manual intervention, and cost long registration time. In our work to reduce the registration time in rough registration step, the barycenter and the direction of main axis of the image is calculated, which reduces the calculation amount compared with the method of using mutual information.

영상의 영역 분할과 이중선형 보간행렬을 이용한 멀티모달 의료 영상의 정합 (Multimodal Medical Image Registration based on Image Sub-division and Bi-linear Transformation Interpolation)

  • 김양욱;박준
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권1호
    • /
    • pp.34-40
    • /
    • 2009
  • Transforms including translation and rotation are required for registering two or more images. In medical applications, different registration methods have been applied depending on the structures: for rigid bodies such as bone structures, affine transformation was widely used. In most previous research, a single transform was used for registering the whole images, which resulted in low registration accuracy especially when the degree of deformation was high between two images. In this paper, a novel registration method is introduced which is based image sub-division and bilinear interpolation of transformations. The proposed method enhanced the registration accuracy by 40% comparing with Trimmed ICP for registering color and MRI images.

전슬관절치환술을 위한 3차원 영역기반 영상정합 기술 (Region-Based 3D Image Registration Technique for TKR)

  • 기재홍;서덕찬;박흥석;윤인찬;이문규;유선국;최귀원
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.

Quantitative Evaluation of Setup Error for Whole Body Stereotactic Radiosurgery by Image Registration Technique

  • Kim, Young-Seok;Yi, Byong-Yong;Kim, Jong-Hoon;Ahn, Seung-Do;Lee, Sang-wook;Im, Ki-Chun;Park, Eun-Kyung
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.103-105
    • /
    • 2002
  • Whole body stereotactic radiosurgery (WBSRS) technique is believed to be useful for the metastatic lesions as well as relatively small primary tumors in the trunk. Unlike stereotactic radiosurgery to intracranial lesion, inherent limitation on immobilization of whole body makes it difficult to achieve the reliable setup reproducibility. For this reason, it is essential to develop an objective and quantitative method of evaluating setup error for WBSRS. An evaluation technique using image registration has been developed for this purpose. Point pair image registrations with WBSRS frame coordinates were performed between two sets of CT images acquired before each treatment. Positional displacements could be determined by means of volumetric planning target volume (PTV) comparison between the reference and the registered image sets. Twenty eight sets of CT images from 19 WBSRS patients treated in Asan Medical Center have been analyzed by this method for determination of setup random error of each treatment. It is objective and clinically useful to analyze setup error quantitatively by image registration technique with WBSRS frame coordinates.

  • PDF

인체 공동 내부 수술용 로봇을 위한 이미지 레지스트레이션 방법 (Medical Image Registration Methods for Intra-Cavity Surgical Robots)

  • 안재범;이상윤
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.140-147
    • /
    • 2007
  • As the use of robots in surgeries becomes more frequent, the registration of medical devices based on images becomes more important. This paper presents two numerical algorithms for the registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using the geometrical information from helix or line fiducials. Both registration algorithms are designed to be used for a surgical robot that works inside a cavity of human body. This paper also reports details about the fiducial pattern that includes four helices and one line. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results showed excellent overall registration accuracy.

VTK를 이용한 의료영상정합의 3차원 시각화 (3D Visualization of Medical Image Registration using VTK)

  • 이명은;김수형;임준식
    • 정보처리학회논문지B
    • /
    • 제15B권6호
    • /
    • pp.553-560
    • /
    • 2008
  • 의료기술의 발전과 함께 의료기관에서 사용되는 영상 데이터량이 급속히 증가하고 있다. 따라서 대용량 의료 영상의 해석을 위해서는 의사들의 육안 검사보다 영상처리 기술을 이용한 자동화 방법이 필요하다. 특히 영상 정합을 통하여 의료 영상을 원하는 형태로 제공할 필요가 있고, 연속적으로 촬영된 2차원 영상들을 3차원 공간으로 해석하고 가시화 할 수 있는 기술이 필수적으로 요구된다. 그러나 현재 고가의 시스템이 대부분이며 의료기관에서는 고가의 시스템 도입에 따른 예산문제로 인해 사용하기를 꺼려하는 문제가 있다. 따라서 본 논문에서는 이러한 환경들을 고려하여 공개 그래픽 라이브러리인 VTK(Visualization Tool Kit)를 이용하여 정합된 결과를 3차원을 비롯한 여러 형태로 가시화할 수 있는 시스템을 개발하고자 한다. 제안한 시각화 시스템은 3차원 공간에서의 정합된 결과를 다양한 형태로 확인함으로써 단순히 2차원으로만 정합 결과를 표현했을 때 보다 정확한 진단 및 치료에 적용할 수 있으며 기존의 유사한 소프트웨어에 비해 가격 경쟁력도 갖출 것이라 예상된다.

PET/CT 영상 움직임 보정 (Motion Correction in PET/CT Images)

  • 우상근;천기정
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권2호
    • /
    • pp.172-180
    • /
    • 2008
  • PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.