• Title/Summary/Keyword: Medical Deep-learning

검색결과 394건 처리시간 0.029초

Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

  • Yu, Ning;Yu, Zeng;Gu, Feng;Li, Tianrui;Tian, Xinmin;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.204-214
    • /
    • 2017
  • Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

Radiomics and Deep Learning: Hepatic Applications

  • Hyo Jung Park;Bumwoo Park;Seung Soo Lee
    • Korean Journal of Radiology
    • /
    • 제21권4호
    • /
    • pp.387-401
    • /
    • 2020
  • Radiomics and deep learning have recently gained attention in the imaging assessment of various liver diseases. Recent research has demonstrated the potential utility of radiomics and deep learning in staging liver fibroses, detecting portal hypertension, characterizing focal hepatic lesions, prognosticating malignant hepatic tumors, and segmenting the liver and liver tumors. In this review, we outline the basic technical aspects of radiomics and deep learning and summarize recent investigations of the application of these techniques in liver disease.

딥러닝을 위한 마스크 착용 유형별 데이터셋 구축 및 검출 모델에 관한 연구 (The Study for Type of Mask Wearing Dataset for Deep learning and Detection Model)

  • 황호성;김동현;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권3호
    • /
    • pp.131-135
    • /
    • 2022
  • Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.

의료 영상에 최적화된 딥러닝 모델의 개발 (Development of an Optimized Deep Learning Model for Medical Imaging)

  • 김영재;김광기
    • 대한영상의학회지
    • /
    • 제81권6호
    • /
    • pp.1274-1289
    • /
    • 2020
  • 최근, 의료 영상 분야에서 딥러닝은 가장 활발하게 연구되고 있는 기술 중 하나이다. 충분한 데이터와 최신의 딥러닝 알고리즘은 딥러닝 모델의 개발에 중요한 요소이다. 하지만 일반화된 최적의 딥러닝 모델을 개발하기 위해서는 데이터의 양과 최신의 딥러닝 알고리즘 외에도 많은 것을 고려해야 한다. 데이터 수집부터 가공, 전처리, 모델의 학습 및 검증, 경량화까지 모든 과정이 딥러닝 모델의 성능에 영향을 미칠 수 있기 때문이다. 본 종설에서는 의료 영상에 최적화된 딥러닝 모델을 위해 개발 과정 각각에서 고려해야 할 중요한 요소들을 살펴보고자 한다.

Deep Learning을 위한 학습 의료영상 데이터셋 및 분석에 관한 연구 (A Study on Learning Medical Image Dataset and Analysis for Deep Learning)

  • 노시형;김지언;정창원;김태훈;전홍영;윤권하
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.350-351
    • /
    • 2018
  • 최근 의료 현장에 인공지능 기술의 도입이 가속화 되고 있다. 특히, 의료영상 분석 분야의 관련된 기 시스템 및 소프트웨어의 패러다임을 변화시키고 있다. 본 연구는 인공지능 기술을 적용하기 위한 학습의료영상 구성을 제안하고 이를 기반으로 X-ray 영상 중 손부위에 적용하여 오른손과 왼손을 판별하는 응용에 적용하였다. 그리고 Deep Learning Algorithm의 CNN을 개선하여 개발한 Advanced GoogLeNet를 적용하여 97%이상의 정확도를 보였다. 본 연구를 통해 얻어진 인공지능에 적용하기 위한 학습데이터 셋 구성과 개선된 알고리즘은 다양한 의료영상분석에 적용하고자 한다.

Q-learning 알고리즘이 성능 향상을 위한 CEE(CrossEntropyError)적용 (Applying CEE (CrossEntropyError) to improve performance of Q-Learning algorithm)

  • 강현구;서동성;이병석;강민수
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.

Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging

  • Ji Eun Park;Philipp Kickingereder;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • 제21권10호
    • /
    • pp.1126-1137
    • /
    • 2020
  • Imaging plays a key role in the management of brain tumors, including the diagnosis, prognosis, and treatment response assessment. Radiomics and deep learning approaches, along with various advanced physiologic imaging parameters, hold great potential for aiding radiological assessments in neuro-oncology. The ongoing development of new technology needs to be validated in clinical trials and incorporated into the clinical workflow. However, none of the potential neuro-oncological applications for radiomics and deep learning has yet been realized in clinical practice. In this review, we summarize the current applications of radiomics and deep learning in neuro-oncology and discuss challenges in relation to evidence-based medicine and reporting guidelines, as well as potential applications in clinical workflows and routine clinical practice.

딥러닝 기반의 의료 OCR 기술 동향 (Trends in Deep Learning-based Medical Optical Character Recognition)

  • 윤성연;최아린;김채원;오수민;손서영;김지연;이현희;한명은;박민서
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.453-458
    • /
    • 2024
  • 광학 문자 인식(Optical Character Recognition, OCR)은 이미지 내의 문자를 인식하여 디지털 포맷(Digital Format)의 텍스트로 변환하는 기술이다. 딥러닝(Deep Learning) 기반의 OCR이 높은 인식률을 보여줌에 따라 대량의 기록 자료를 보유한 많은 산업 분야에서 OCR을 활용하고 있다. 특히, 의료 산업 분야는 의료 서비스 향상을 위해 딥러닝 기반의 OCR을 적극 도입하였다. 본 논문에서는 딥러닝 기반 OCR 엔진(Engine) 및 의료 데이터에 특화된 OCR의 동향을 살펴보고, 의료 OCR의 발전 방향에 대해 제시한다. 현재의 의료 OCR은 검출한 문자 데이터를 자연어 처리(Natural Language Processing, NLP)하여 인식률을 개선하였다. 그러나, 정형화되지 않은 손글씨(Handwriting)나 변형된 문자에서는 여전히 인식 정확도에 한계를 보였다. 의료 데이터의 데이터베이스(Database)화, 이미지 전처리(Pre-processing), 특화된 자연어 처리를 통해 더욱 고도화된 의료 OCR을 발전시키는 것이 필요하다.

Deep Learning 기반의 DGA 개발에 대한 연구 (A Study on the Development of DGA based on Deep Learning)

  • 박재균;최은수;김병준;장범
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.18-28
    • /
    • 2017
  • Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.