• Title/Summary/Keyword: Medical Big data

Search Result 419, Processing Time 0.029 seconds

The Effect of Data 3 on the Utilization of Medical Big Data for Early Detection of Dementia (데이터 3법이 치매 조기 예측을 위한 의료 빅데이터 활용에 미치는 영향 연구)

  • Kim, Hyejin
    • Journal of Digital Convergence
    • /
    • v.18 no.5
    • /
    • pp.305-315
    • /
    • 2020
  • As the incidence and prevalence of dementia increases with our aging population, so does the social burden on our society, which calls for a special emphasis on need for early diagnosis. Thus, efforts are made to prevent dementia and early detection but with current diagnostic measures, these efforts appear futile. As a solution, it is crucial to integrate and standardize healthcare big data and analysis of each index. In order to increase use of large database, the Korea National Assembly passed the Data 3 Act focusing on open-access and sharing of database, but a follow-up legislation is needed a for safer utilization. In this study, we have identified number of foreign of foreign policies through review of prior researches on the topic leading to specific enforcement ordinances tailored to the Data 3 Act for safe access and utilization of database. We also aimed to establish secure process of data collection and disposal as well as governance at the national level to ensure safe utilization of healthcare big data.

Cost-Effective MapReduce Processing in the Cloud (클라우드 환경에서의 비용 효율적인 맵리듀스 처리)

  • Ryu, Wooseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.114-115
    • /
    • 2018
  • This paper studies a mechanism for cost-effective analysis of big data in the cloud environment. Recently, as a storage of electronic medical records can be managed outside the hospital, there is a growing demand for cloud-based big data analysis in small-and-medium hospitals. This paper firstly analyze the Amazon Elastic MapReduce which is a popular cloud framework for big data analysis, and proposes a cost model for analyzing big data using Amazon EMR with less cost. Using the proposed model, the user can construct a cost-effective computing cluster, which maximize the effectiveness of the analysis per operational cost.

  • PDF

Finding Industries for Big Data Usage on the Basis of AHP (AHP 기반의 빅데이터 활용을 위한 산업 탐색)

  • Lee, Sang-Won;Kim, Sung-Hyun
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.21-27
    • /
    • 2016
  • Big Data is gathering all the attention from every business community. Pervasive use of machine-to-machine (M2M) applications and mobile devices bring an explosion of data. By analyzing this data, the private and public sectors can benefit in the areas of cost reduction and productivity. The Korean government is actively pursuing Big Data initiatives to promote its usage. This paper aims to select industries which fit for the development of Big Data with a verification of the experts. The analytic hierarchy process (AHP) is applied to systematically derive the opinion of more than 50 professionals. Medical / welfare, transportation / warehousing, information and communications / information security, energy, the financial sector have been identified as promising industries. The results can be utilized in developing Big Data best practices thus contributing industrial development.

Implementation of Disease Search System Based on Public Data using Open Source (오픈 소스를 활용한 공공 데이터 기반의 질병 검색 시스템 구현)

  • Park, Sun-ho;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1337-1342
    • /
    • 2019
  • Medical institutions face the challenge of securing competitiveness among medical institutions due to the rapid spread of ICT convergence, and managing data that is growing at an enormous rate due to the emergence of big data and the emergence of the Internet of Things. The big data paradigm of the medical community is not just about large data or tools and processes for processing and analyzing it, but also means a computerized shift in the way people live, think and study. As the medical data is recently released, the demand for the use of medical data is increasing. Therefore, the research on disease detection system based on public data using open source that can help rational and efficient decision making was conducted. As a result of the experiment, unlike a simple disease inquiry or a symptom inquiry about a single disease provided by a public institution, related diseases are searched by a symptom or a cause.

Development of Mission and Vision of College of Korean Medicine Using the Delphi Techniques and Big-Data Analysis

  • Yeo, Sanghee;Choi, Seong Hun;Chae, Su Jin
    • The Journal of Korean Medicine
    • /
    • v.42 no.4
    • /
    • pp.176-184
    • /
    • 2021
  • Objectives: The purpose of this study is to introduce the procedures and methods for mission and vision development at a College of Korean Medicine (CKM), which established its mission and vision using Delphi techniques and big data analysis on various members and stakeholders. Methods: A total of 754 participated in the Delphi survey. A Delphi survey was conducted with professors, students, parents, and alumni stakeholders to establish Daegu Haany University CKM's mission and vision. The data were analyzed through content analysis and big data analysis of keywords. Results: As a result of the study, the most important keywords to be included in the mission and vision were "professionalism" and "morality." Included in the mission were the concepts of "morality" and "professionalism," which were emphasized by the four groups. All surveyed stakeholders regarded "scientific," and "global" as important themes to be included in the vision. Conclusions: The present study confirmed that there were themes commonly prioritized by all stakeholders for college mission and vision, and a difference in demand for educational goals between professors and students was also affirmed. Therefore, institutions of higher learning should develop their mission and vision by appropriately reflecting the needs of the interest groups.

Analysis of Guaranteeing Health Rights of Women with Disabilities based on Medical Big Data (의료빅데이터 기반 여성 장애인 건강권 보장 분석)

  • Min-Hee Park;Min-Kyoung Kim;Jong-Bae Park;Young-Bok Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.317-319
    • /
    • 2023
  • 본 논문에서는 변화하는 ICT 기술을 기반으로 의료정보의 빅데이터화를 통해 건강권에 대해 장애인과 비장애인을 중심으로 살펴본다. 전국민 대상의 국가건강검진 중 암 검진에 수검율을 조사하고 여성 장애인의 수검 요인을 분석해 장애인의 건강권 보장이 가능한지 살펴본다. 국가암검진 중 30대 이상 여성을 중심으로 진행되는 자궁경부암 수검 요인을 건강행태적 요인으로 분석한 결과 통계적으로 유의한 차이를 보였다.

  • PDF

A Study of Big Data Domain Automatic Classification Using Machine Learning (머신러닝을 이용한 빅데이터 도메인 자동 판별에 관한 연구)

  • Kong, Seongwon;Hwang, Deokyoul
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.11-18
    • /
    • 2018
  • This study is a study on domain automatic classification for domain - based quality diagnosis which is a key element of big data quality diagnosis. With the increase of the value and utilization of Big Data and the rise of the Fourth Industrial Revolution, the world is making efforts to create new value by utilizing big data in various fields converged with IT such as law, medical, and finance. However, analysis based on low-reliability data results in critical problems in both the process and the result, and it is also difficult to believe that judgments based on the analysis results. Although the need of highly reliable data has also increased, research on the quality of data and its results have been insufficient. The purpose of this study is to shorten the work time to automizing the domain classification work which was performed from manually to using machine learning in the domain - based quality diagnosis, which is a key element of diagnostic evaluation for improving data quality. Extracts information about the characteristics of the data that is stored in the database and identifies the domain, and then featurize it, and automizes the domain classification using machine learning. We will use it for big data quality diagnosis and contribute to quality improvement.

Feasibility to Expand Complex Wards for Efficient Hospital Management and Quality Improvement

  • CHOI, Eun-Mee;JUNG, Yong-Sik;KWON, Lee-Seung;KO, Sang-Kyun;LEE, Jae-Young;KIM, Myeong-Jong
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.12
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: This study aims to explore the feasibility of expanding complex wards to provide efficient hospital management and high-quality medical services to local residents of Gangneung Medical Center (GMC). Research Design, Data and Methodology: There are four research designs to achieve the research objectives. We analyzed Big Data for 3 months on Social Network Services (SNS). A questionnaire survey conducted on 219 patients visiting the GMC. Surveys of 20 employees of the GMC applied. The feasibility to expand the GMC ward measured through Focus Group Interview by 12 internal and external experts. Data analysis methods derived from various surveys applied with data mining technique, frequency analysis, and Importance-Performance Analysis methods, and IBM SPSS statistical package program applied for data processing. Results: In the result of the big data analysis, the GMC's recognition on SNS is high. 95.9% of the residents and 100.0% of the employees required the need for the complex ward extension. In the analysis of expert opinion, in the future functions of GMC, specialized care (△3.3) and public medicine (△1.4) increased significantly. Conclusion: GMC's complex ward extension is an urgent and indispensable project to provide efficient hospital management and service quality.

An Analysis System Using Big Data based Real Time Monitoring of Vital Sign: Focused on Measuring Baseball Defense Ability (빅데이터 기반의 실시간 생체 신호 모니터링을 이용한 분석시스템: 야구 수비능력 측정을 중심으로)

  • Oh, Young-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.221-228
    • /
    • 2018
  • Big data is an important keyword in World's Fourth Industrial Revolution in public and private division including IoT(Internet of Things), AI(Artificial Intelligence) and Cloud system in the fields of science, technology, industry and society. Big data based on services are available in various fields such as transportation, weather, medical care, and marketing. In particular, in the field of sports, various types of bio-signals can be collected and managed by the appearance of a wearable device that can measure vital signs in training or rehabilitation for daily life rather than a hospital or a rehabilitation center. However, research on big data with vital signs from wearable devices for training and rehabilitation for baseball players have not yet been stimulated. Therefore, in this paper, we propose a system for baseball infield and outfield players, especially which can store and analyze the momentum measurement vital signals based on big data.