• Title/Summary/Keyword: Medical Big data

Search Result 419, Processing Time 0.028 seconds

Analysis of Research Trends in Data Curation Using Text Mining Techniques (텍스트 마이닝을 활용한 국외 데이터 큐레이션 연구 동향 분석)

  • Jaeeun Choi
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.3
    • /
    • pp.85-107
    • /
    • 2024
  • This study analyzes trends in data curation research. A total of 1,849 scholarly records were extracted from Scopus and WoS, with 1,797 papers selected after removing duplicates. Titles, keywords, and abstracts were analyzed through keyword frequency analysis, LDA topic modeling, and network analysis. Frequent keywords like 'research' and 'information' suggest that data curation is widely applied in medical research, biomedical research, data management, and infrastructure. LDA modeling identified five main topics: improving medical data quality, enhancing big data management, managing scientific data and repositories, annotating and modeling medical data, and gene/protein database research. Network analysis showed that 'analysis' was central in global discussions, while 'gene' and 'system' were locally central. These findings highlight the importance of data curation in various research areas.

Lifelog Big Data Based Metabolic Syndrome Management System (라이프로그 빅데이터 기반 대사증후군 관리 시스템)

  • Kim, Ji-Eon;Kim, Seung-Jin;No, Si-Hyeong;Jeong, Chang-Won;Kim, Tae-Hoon;Jun, Hong-Yong;Yu, Tae-Yang;Yoon, Kwon-Ha
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.236-237
    • /
    • 2018
  • 최근 생활습관정보는 대사증후군을 진단하기 위한 임상적 진단지표로 중요하게 활용되고 있다. 대사증후군은 심혈관 및 간질환 그리고 당뇨와 같은 여러 합병증을 유발할 수 있는 질환으로 질환 정도에 따른 체계적 관리가 필요하다. 그러나 대사증후군 환자의 생활습관을 수집하기 위한 대부분의 시스템은 자가진단 및 예방 중심의 시스템으로 구성되어 있어 정확한 생활습관을 수집하여 생활습관을 관리하기에는 어려움이 있다. 본 논문에서 제안하는 시스템은 임상적 진단지표에 도움이 될 수 있도록 신뢰성 있는 생활습관 정보를 수집하기 위한 방법을 제시하고 수집된 생활습관정보를 모니터링 하여 환자의 생활습관 개선 여부에 따라 지속적인 피드백을 제공하여 체계적으로 생활습관을 관리할 수 있는 시스템을 제안하고자 한다.

Current scientific technology and future challenges for personalized nutrition service (맞춤형 영양서비스를 위한 과학기술과 해결과제)

  • Kim, Kyeong Jin;Lee, Yeonkyung;Kim, Ji Yeon
    • Food Science and Industry
    • /
    • v.54 no.3
    • /
    • pp.145-159
    • /
    • 2021
  • Conventional nutrition services involve producer-oriented approaches without considering the differences in the characteristics and circumstances of each individual, whereas personalized nutrition services are consumer-oriented concepts that provide products and services for maintaining optimal health conditions based on the genetic, physiological, and metabolic characteristics of individuals, with these products based on balanced nutrition and healthy living. Currently, methods for evaluating dietary habits, monitoring dietary behaviors, deep phenotyping, and metabotyping via microbiota profiling, as well as methods for predicting big data by using machine learning, have been previously studied in Korea and abroad. With the development of medical technology and the improvement of hygiene, the demand for personalized nutrition and health services for healthier, happier, and more satisfying lives is rapidly increasing. Therefore, based on scientific technologies, attempts are needed to advance these services into global personalized markets and to boost the global competitiveness of countries and companies.

Encoding Dictionary Feature for Deep Learning-based Named Entity Recognition

  • Ronran, Chirawan;Unankard, Sayan;Lee, Seungwoo
    • International Journal of Contents
    • /
    • v.17 no.4
    • /
    • pp.1-15
    • /
    • 2021
  • Named entity recognition (NER) is a crucial task for NLP, which aims to extract information from texts. To build NER systems, deep learning (DL) models are learned with dictionary features by mapping each word in the dataset to dictionary features and generating a unique index. However, this technique might generate noisy labels, which pose significant challenges for the NER task. In this paper, we proposed DL-dictionary features, and evaluated them on two datasets, including the OntoNotes 5.0 dataset and our new infectious disease outbreak dataset named GFID. We used (1) a Bidirectional Long Short-Term Memory (BiLSTM) character and (2) pre-trained embedding to concatenate with (3) our proposed features, named the Convolutional Neural Network (CNN), BiLSTM, and self-attention dictionaries, respectively. The combined features (1-3) were fed through BiLSTM - Conditional Random Field (CRF) to predict named entity classes as outputs. We compared these outputs with other predictions of the BiLSTM character, pre-trained embedding, and dictionary features from previous research, which used the exact matching and partial matching dictionary technique. The findings showed that the model employing our dictionary features outperformed other models that used existing dictionary features. We also computed the F1 score with the GFID dataset to apply this technique to extract medical or healthcare information.

Intelligent Hospital Information System Model for Medical AI Research/Development and Practical Use (의료인공지능 연구/개발 및 실용화를 위한 지능형 병원정보시스템 모델)

  • Shon, Byungeun;Jeong, Sungmoon
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.67-75
    • /
    • 2022
  • Medical information is variously generated not only from medical devices but also from electronic devices. Recently, related convergence technologies from big data collection in healthcare to medical AI products for patient's condition analysis are rapidly increasing. However, there are difficulties in applying them because of independent developmental procedures. In this paper, we propose an intelligent hospital information system (iHIS) model to simplify and integrate research, development and application of medical AI technology. The proposed model includes (1) real-time patient data management, (2) specialized data management for medical AI development, and (3) real-time monitoring for patient. Using this, real-time biometric data collection and medical AI specialized data generation from patient monitoring devices, as well as specific AI applications of camera-based patient gait analysis and brain MRA-based cerebrovascular disease analysis will be introduced. Based on the proposed model, it is expected that it will be used to improve the HIS by increasing security of data management and improving practical use through consistent interface platformization.

Clustering for Home Healthcare Service Satisfaction using Parameter Selection

  • Lee, Jae Hong;Kim, Hyo Sun;Jung, Yong Gyu;Cha, Byung Heon
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.238-243
    • /
    • 2019
  • Recently, the importance of big data continues to be emphasized, and it is applied in various fields based on data mining techniques, which has a great influence on the health care industry. There are many healthcare industries, but only home health care is considered here. However, applying this to real problems does not always give perfect results, which is a problem. Therefore, data mining techniques are used to solve these problems, and the algorithms that affect performance are evaluated. This paper focuses on the effects of healthcare services on patient satisfaction and satisfaction. In order to use the CVParameterSelectin algorithm and the SMOreg algorithm of the classify method of data mining, it was evaluated based on the experiment and the verification of the results. In this paper, we analyzed the services of home health care institutions and the patient satisfaction analysis based on the name, address, service provided by the institution, mood of the patients, etc. In particular, we evaluated the results based on the results of cross validation using these two algorithms. However, the existence of variables that affect the outcome does not give a perfect result. We used the cluster analysis method of weka system to conduct the research of this paper.

Effective Utilization of Data based on Analysis of Spatial Data Mining (공간 데이터마이닝 분석을 통한 데이터의 효과적인 활용)

  • Kim, Kibum;An, Beongku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2013
  • Data mining is a useful technology that can support new discoveries based on the pattern analysis and a variety of linkages between data, and currently is utilized in various fields such as finance, marketing, medical. In this paper, we propose an effective utilization method of data based on analysis of spatial data mining. We make use of basic data of foreigners living in Seoul. However, the data has some features distinguished from other areas of data, classification as sensitive information and legal problem such as personal information protection. So, we use the basic statistical data that does not contain personal information. The main features and contributions of the proposed method are as follows. First, we can use Big Data as information through a variety of ways and can classify and cluster Big Data through refinement. Second. we can use these kinds of information for decision-making of future and new patterns. In the performance evaluation, we will use visual approach through graph of themes. The results of performance evaluation show that the analysis using data mining technology can support new discoveries of patterns and results.

A Study on the Awareness & Preferences about the Elderly Care Facilities (노인 요양시설에 대한 의식 및 선호도 연구)

  • Shin, Hee-Sik;Chu, Yeon-Cheol;Youn, Chung-Yeul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.11 no.4
    • /
    • pp.51-58
    • /
    • 2009
  • The senior adults which are a central manpower of economic activity of the nation decreased and the elderly sustenance allowance already went over 10%. And the economic activity participation of the woman which are the supporter of the unpaid the elderly within the family is increasing. This big change is expected to support awareness. To respond to these changes, the improvement of social welfare system for elderly with the job of retirement lifestyles of the elderly, a figure that is needed for the ceremony. The elderly medical treatment facility that began in 2008 the elderly long-term medical treatment law enforcement because of the demand is expected to grow. It is forecast with the fact that the data which is fundamental is most important will become that old person medical treatment facility of the middle-aged layer which is a central role of the protector who decides the facility use of the preliminary consumer of the elderly care facility and currently the very the elderly and manhood ceremony and the preference to plan of the elderly welfare facility. The purpose of this study is to present the fundamental data about the elderly care facility for comparative analysis the awareness & perfernces of the elderly care facilities of the senior adults & the elderly.

  • PDF

A Transformer-Based Emotion Classification Model Using Transfer Learning and SHAP Analysis (전이 학습 및 SHAP 분석을 활용한 트랜스포머 기반 감정 분류 모델)

  • Subeen Leem;Byeongcheon Lee;Insu Jeon;Jihoon Moon
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.706-708
    • /
    • 2023
  • In this study, we embark on a journey to uncover the essence of emotions by exploring the depths of transfer learning on three pre-trained transformer models. Our quest to classify five emotions culminates in discovering the KLUE (Korean Language Understanding Evaluation)-BERT (Bidirectional Encoder Representations from Transformers) model, which is the most exceptional among its peers. Our analysis of F1 scores attests to its superior learning and generalization abilities on the experimental data. To delve deeper into the mystery behind its success, we employ the powerful SHAP (Shapley Additive Explanations) method to unravel the intricacies of the KLUE-BERT model. The findings of our investigation are presented with a mesmerizing text plot visualization, which serves as a window into the model's soul. This approach enables us to grasp the impact of individual tokens on emotion classification and provides irrefutable, visually appealing evidence to support the predictions of the KLUE-BERT model.

An Empirical Study of User Perceptions on EMR Standardization Leading Medical & IT Convergence (의료·IT융합을 이끄는 EMR 표준화에 대한 이용자 인식 연구)

  • Lee, Ji-Eun;Nah, Suk-Gyu
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.111-118
    • /
    • 2015
  • Electronic Medical Record(EMR) is medical record that has been saved electronically onto a computer. The standardization activities for EMR is actively underway as it may not only improve the overall quality of the medical services but as the value of medical big data (medical & IT convergence area) is being considered very important. One of the most important issues is ensuring the necessary and effectiveness of EMR standardization to the stakeholder. Researchers did an empirical study to find out how the doctors perceived the EMR standardization from both technical and economical perspective. The results of the empirical analyses showed that system quality and an economical value had a positive effect on perceived usefulness and intention to adopt EMR standardization, yet interoperability have only affected the perceived usefulness. Additionally, the economical value seemed to be the most important variable in forming a consensus in the need of EMR standardization.