Chang, Jeong Hyeon;Kim, Young Jae;Choi, Jong Hyeok;Kim, Chang Su;Aziz, Nasridinov
Journal of Korea Multimedia Society
/
v.21
no.2
/
pp.271-280
/
2018
Recently, big data has been growing rapidly due to the development of IT technology. Especially in the medical field, big data is utilized to provide services such as patient-customized medical care, disease management and disease prediction. In Korea, 'National Health Alarm Service' is provided by National Health Insurance Corporation. However, the prediction model has a problem of short-term prediction within 3 days and unreliability of social data used in prediction model. In order to solve these problems, this paper proposes a disease prediction model using medicine prescription data generated from actual patients. This model predicts the total number of patients and the risk of disease in each region and uses the ARIMA model for long-term predictions.
Journal of the Korean Operations Research and Management Science Society
/
v.39
no.4
/
pp.51-69
/
2014
Times to multiple events (TMEs) are a major data type in large-scale business and medical data. Despite its importance, the analysis of TME data has not been well studied because of the analysis difficulty from censoring of observation. To address this difficulty, we have developed a Bayesian-based multivariate survival analysis method, which can successfully estimate the joint probability density of survival times. In this work, we extended this method for the analysis of precedence, dependency and causality among multiple events. We applied this method to the electronic health records of 2,111 patients in a children's hospital in the US and the proposed analysis successfully shows the relation between times to two types of hospital visits for different medical issues. The overall result implies the usefulness of the multivariate survival analysis method in large-scale big data in a variety of areas including marketing, human resources, and e-commerce. Lastly, we suggest our future research directions based multivariate survival analysis method.
With the entry into the aging society, we are increasingly interested in wellness, and personalized medical services through artificial intelligence are expanding. In order to provide personalized medical services, it is difficult to provide accurate medical analysis services only with the existing hospital system components PM / PA, OCS, EMR, PACS, and LIS. Therefore, it is necessary to present the hospital system model and the construction plan suitable for personalized medical service. Currently, some medical cloud services and artificial intelligence diagnosis services using Watson are being introduced in domestic. However, there are not many examples of systematic hospital system construction. Therefore, this paper proposes a hospital system model suitable for personalized medical service. To do this, we design a model that integrates medical big data construction and AI medical analysis system into the existing hospital system components, and suggest development plan of each module. The proposed model is meaningful as a basic research that provides guidelines for the construction of new hospital system in the future.
Emergency statistics for cities and provinces are currently derived using simple results of comparative numerical data, but there is a limit to the ability to analyze and compare deviations relevant to a specific city and province. This study aims to derive various correlations through statistical analysis of emergency and rescue data for Gwangju Metropolitan City and to develop an analytical model that can be applied nationwide. With the new statistical model, further detailed analysis is possible beyond simple evaluation of rescue data, through links to other institutions and analyses using keywords from Internet portal sites and social networks. Second, a system which that can analyze data that are not shared is required. Through this system, a large amount of data can be automatically analysed in real time. Third, the results should flow back for application in various policies. A real-time monitoring and management system should be created for abnormal patterns of disease. In addition, the results should be available to tailor services for individuals, communities, or specific organizations.
International journal of advanced smart convergence
/
v.10
no.2
/
pp.21-30
/
2021
With the rapid development of artificial intelligence and big data, a lot of medical data is effectively used, and the diagnosis and analysis of diseases has entered the era of intelligence. With the increasing public health awareness, ordinary citizens have also put forward new demands for panic disorder health services. Specifically, people hope to predict the risk of panic disorder as soon as possible and grasp their own condition without leaving home. Against this backdrop, the smart health industry comes into being. In the Internet age, a lot of panic disorder health data has been accumulated, such as diagnostic records, medical record information and electronic files. At the same time, various health monitoring devices emerge one after another, enabling the collection and storage of personal daily health information at any time. How to use the above data to provide people with convenient panic disorder self-assessment services and reduce the incidence of panic disorder in China has become an urgent problem to be solved. In order to solve this problem, this research applies the context awareness to the automatic diagnosis of human diseases. While helping patients find diseases early and get treatment timely, it can effectively assist doctors in making correct diagnosis of diseases and reduce the probability of misdiagnosis and missed diagnosis.
Outbreak of COVID-19 originated from China resulted significantly high casualties and social and economic damages. Currently the major countries see importance of accurate prediction of originating trend to prevent the spread of infectious disease and AI is actively utilized when establishing the system. Therefore this study has comprehended the status of utilizing the AI in overseas and made comparison and analysis with domestic status. It derived the necessity to establish national control tower based on One Health to respond to infectious disease to effectively utilize AI and suggested to establish higher organization, Medical Big Data Governance, to respond to the infectious disease. It is necessary to conduct further study to utilize the results and suggestions derived from this study into the policy and if the suggestions are reflected to improve institutional imperfection, it will be positively used for prevention of the spreading infectious disease and utilizing medical Big Data.
Recently the disease by eating of the modern prevention, management, and trends in the u-healthcare service that provides healthcare services including health promotion is changing rapidly. However, u-healthcare service is a healthcare information that provides users of the disease can not be analyzed even if the service is stored or not stored in the management server status is giving the inconvenience caused to users of the health services. In this paper, we propose a management method of health care services and a big data formation information that provides users of the disease to facilitate the users of health care services through the use magazine big data information regardless of time and place. The proposed method has the user's bio-information and the measured health information and transmits data through a wired or wireless communication to the medical institution and the user's health information data formation by the big user of the analysis of the health information and the disease of the user feedback to the user.
International Journal of Advanced Culture Technology
/
v.11
no.3
/
pp.332-337
/
2023
The purpose of the study was to analyze consumers' perceptions of gamification. Based on the analyzed data, we would like to provide data by systematically organizing the concept, game elements, and mechanisms of gamification. Recently, gamification can be easily found around medical care, corporate marketing, and education. This study collected keywords from social media portal sites Naver, Daum, and Google from 2018 to 2023 using TEXTOM, a social media analysis tool. In this study, data were analyzed using text mining, semantic network analysis, and CONCOR analysis methods. Based on the collected data, we looked at the relevance and clusters related to gamification. The clusters were divided into a total of four clusters: 'Awareness of Gamification', 'Gamification Program', 'Future Technology of Gamification', and 'Use of Gamification'. Through social media analysis, we want to investigate and identify consumers' perceptions of gamification use, and check market and consumer perceptions to make up for the shortcomings. Through this, we intend to develop a plan to utilize gamification.
Park, Min-hee;Cho, Young-bok;Kim, So Young;Park, Jong-bae;Park, Jong-hyock
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.10
/
pp.1277-1286
/
2018
In this paper, we provide flexible scalability of computing resources in cloud environment and Apache Hadoop based cloud environment for analysis of public medical information big data. In fact, it includes the ability to quickly and flexibly extend storage, memory, and other resources in a situation where log data accumulates or grows over time. In addition, when real-time analysis of accumulated unstructured log data is required, the system adopts Hadoop-based analysis module to overcome the processing limit of existing analysis tools. Therefore, it provides a function to perform parallel distributed processing of a large amount of log data quickly and reliably. Perform frequency analysis and chi-square test for big data analysis. In addition, multivariate logistic regression analysis of significance level 0.05 and multivariate logistic regression analysis of meaningful variables (p<0.05) were performed. Multivariate logistic regression analysis was performed for each model 3.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.1
/
pp.221-237
/
2016
The wireless body area networks (WBANs) consist of wearable computing devices and can support various healthcare-related applications. There exist two crucial issues when WBANs are utilized for healthcare applications. One is the protection of the sensitive biometric data transmitted over the insecure wireless channels. The other is the design of effective medical management mechanisms. In this paper, a secure medical information management system is proposed and implemented on a TinyOS-based WBAN test bed to simultaneously address these two issues. In this system, the electronic medical record (EMR) is bound to the biometric data with a novel fragile zero-watermarking scheme based on the modified visual secret sharing (MVSS). In this manner, the EMR can be utilized not only for medical management but also for data integrity checking. Additionally, both the biometric data and the EMR are encrypted, and the EMR is further protected by the MVSS. Our analysis and experimental results demonstrate that the proposed system not only protects the confidentialities of both the biometric data and the EMR but also offers reliable patient information authentication, explicit healthcare operation verification and undeniable doctor liability identification for WBANs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.