• 제목/요약/키워드: Medical Big Data

검색결과 417건 처리시간 0.026초

A Study on Development of a Tourism Course in Seosan using Social using Media Big Data

  • Ha, Yeon-Joo;Park, Jong-Hyun;Yoo, Kyoungmi;Moon, Seok-Jae;Ryu, Gihwan
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.134-140
    • /
    • 2021
  • Big data has recently been used in various industries such as tourism, medical care, distribution, and marketing. And it is evolving to the stage of collecting real-time information or analyzing correlations and predicting the future. In the tourism industry, big data can be used to identify the size and shape of the tourism market, and by building and utilizing a large-capacity database, it is possible to establish an efficient marketing strategy and provide customized tourism services for tourists. This paper has begun with anticipation of the effects that would occur when big data is actively used in the tourism field. Because the method of use must have applicability and practicality, the spatial scope will be limited to Seosan, Chungcheongnam-do, and research will be conducted. In this paper, to improve the quality of tourism courses by collecting and analyzing the number of mention data and sentiment index data on social media, which reflect the tourist's interest, preference and satisfaction. Therefore, it is used as basic data necessary for the development of new local tourism courses in the future. In addition, the development of tourism courses will be able to promote tourism growth and also revitalizing the local economy.

Continual learning을 이용한 한국어 상호참조해결의 도메인 적응 (Domain adaptation of Korean coreference resolution using continual learning)

  • 최요한;조경빈;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.320-323
    • /
    • 2022
  • 상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.

  • PDF

형태소 수준의 한국어 상호참조해결 (Korean Coreference Resolution at the Morpheme Level )

  • 조경빈;최요한;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.329-333
    • /
    • 2022
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 End-to-End 모델이 주로 연구가 되었다. 그러나 End-to-End 방식으로 모델을 수행하기 위해서는 모든 스팬을 잠재적인 멘션으로 간주해야 되기 때문에 많은 메모리가 필요하고 시간 복잡도가 상승하는 문제가 있다. 본 논문에서는 서브 토큰을 다시 단어 단위로 매핑하여 상호참조해결을 수행하는 워드 레벨 상호참조해결 모델을 한국어에 적용하며, 한국어 상호참조해결의 특징을 반영하기 위해 워드 레벨 상호참조해결 모델의 토큰 표현에 개체명 자질과 의존 구문 분석 자질을 추가하였다. 실험 결과, ETRI 질의응답 도메인 평가 셋에서 F1 69.55%로, 기존 End-to-End 방식의 상호참조해결 모델 대비 0.54% 성능 향상을 보이면서 메모리 사용량은 2.4배 좋아졌고, 속도는 1.82배 빨라졌다.

  • PDF

긴 문서를 위한 BERT 기반의 End-to-End 한국어 상호참조해결 (Korean End-to-End Coreference Resolution with BERT for Long Document)

  • 조경빈;정영준;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.259-263
    • /
    • 2021
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델이 주로 연구되었으나, 512 토큰 이상의 긴 문서를 처리하기 위해서는 512 토큰 이하로 문서를 분할하여 처리하기 때문에 길이가 긴 문서에 대해서는 상호참조해결 성능이 낮아지는 문제가 있다. 본 논문에서는 512 토큰 이상의 긴 문서를 위한 BERT 기반의 end-to-end 상호참조해결 모델을 제안한다. 본 모델은 긴 문서를 512 이하의 토큰으로 쪼개어 기존의 BERT에서 단어의 1차 문맥 표현을 얻은 후, 이들을 다시 연결하여 긴 문서의 Global Positional Encoding 또는 Embedding 값을 더한 후 Global BERT layer를 거쳐 단어의 최종 문맥 표현을 얻은 후, end-to-end 상호참조해결 모델을 적용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 모델과 유사한 성능을 보이면서(테스트 셋에서 0.16% 성능 향상), GPU 메모리 사용량은 1.4배 감소하고 속도는 2.1배 향상되었다.

  • PDF

지역사회기반 디지털 헬스케어 (Digital Health Care based in the Community)

  • 한정원;정지원;유지인;김지현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.511-513
    • /
    • 2022
  • 디지털 헬스케어는 첨단 정보통신기술과 의료기술·비의료기술의 융합으로 질병치료에서 예방관리로 의료서비스의 패러다임 변화에 따라 지역을 기반으로 예방 및 모니터링 기반 건강관리의 중요성을 강조하고 있다. 4P(Predictive, Preventive, Personalized, Participatory)는 예측적, 예방적, 개인적, 참여적 헬스케어 서비스로 말할 수 있다. 기존의 노인장기요양 급여의 복지용구 품목 중심의 제한적 산업에서 벗어나 최신 기술을 활용한 AI·IoT·빅데이터 등 4차 산업혁명 기술과 접목을 통한 새로운 서비스를 제공할 필요성이 여러 분야에서 대두되고 있으며 돌봄 로봇, 웨어러블 등 신기술 개발 뿐 아니라 실증을 통한 상용화가 필요한 상황이다. 향후 빅데이터·인공지능 등 미래 신기술과 연계하여 다양한 서비스 창출이 가능하다.

  • PDF

퓨샷 개체명 인식을 위한 Maximal Marginal Relevance 기반의 라벨 단어 집합 생성 (Generating Label Word Set based on Maximal Marginal Relevance for Few-shot Name Entity Recognition)

  • 최효림;황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.664-671
    • /
    • 2023
  • 최근 다양한 거대 언어모델(Large Language Model)들이 개발되면서 프롬프트 엔지니어링의 대한 다양한 연구가 진행되고 있다. 본 논문에서는 퓨삿 학습 환경에서 개체명 인식의 성능을 높이기 위해서 제안된 템플릿이 필요 없는 프롬프트 튜닝(Template-free Prompt Tuning) 방법을 이용하고, 이 방법에서 사용된 라벨 단어 집합 생성 방법에 Maximal Marginal Relevance 알고리즘을 적용하여 해당 개체명에 대해 보다 다양하고 구체적인 라벨 단어 집합을 생성하도록 개선하였다. 실험 결과, 'LOC' 타입을 제외한 나머지 개체명 타입에서 'PER' 타입은 0.60%p, 'ORG' 타입은 4.98%p, 'MISC' 타입은 1.38%p 성능이 향상되었고, 전체 개체명 인식 성능은 1.26%p 향상되었다. 이를 통해 본 논문에서 제안한 라벨 단어 집합 생성 기법이 개체명 인식 성능 향상에 도움이 됨을 보였다.

  • PDF

디지털 덴탈 헬스케어 분야에서의 빅데이터 활용 전망에 대한 연구 (A study on the applications and prospects of big data in the field of digital dental healthcare)

  • 류재경;김남중;김소민;이선경
    • 대한치과기공학회지
    • /
    • 제46권2호
    • /
    • pp.42-48
    • /
    • 2024
  • Purpose: The purpose of this study is to investigate the applications and prospects of big data in digital dental healthcare. Methods: The study included 30 participants in the dental field (dentists, technicians, professors, and graduate students). From June 25 to 30, 2023, the contents of the study were thoroughly explained, consent was obtained from the research subjects, and a questionnaire was administered via an internet service. The questionnaires of 28 participants who responded completely were used for analysis. The collected data were statistically processed using IBM SPSS Statistics ver. 22.0 (IBM). Results: The use of big data in digital dental healthcare, digital dental health system, mobile dental health, dental health analysis, and telehealthcare were all heavily surveyed, with an average score of 3.97 or higher on a 5-point Likert scale. The areas where big data can be utilized in digital dental healthcare are as follows. The utilization rate for three-dimensional digital product development via linkage with big data systems and industrial field manufacturing technology was found to be 4.11±0.67, and the analysis of trends by age in the occurrence of various oral diseases was found to be 4.00±0.98. Conclusion: In the future, research into the viability of big data's success in the medical data field, which is directly related to human life, is needed. Additionally, social policies and regulations regarding big data-related information and standards in dental healthcare are necessary.

보건의료 빅데이터를 활용한 소아 감기 치료의 동향 조사 (A Study on the Trend of Childhood Common Cold Treatment Using Health Big Data)

  • 김태정;성현경;민상연
    • 대한한방소아과학회지
    • /
    • 제36권2호
    • /
    • pp.1-12
    • /
    • 2022
  • Objectives We analyzed visiting patterns to medical institutions and cost per visit according to the common cold patients aged 0-19 years. We analyzed Korean medical treatment for common cold. Methods Using the Pediatric Patient Sample data of the Health Insurance Review and Assessment Service (HIRA-PPS), we analyzed the data on health insurance claims of approximately 1 million people from 2017 to 2019. The data included the number of patients who visited the hospital due to common cold for the first and second time, the ratio of second visits by type of medical institution, and the status of prescriptions in Korean medical institutions. Results The number of patients visiting healthcare providers for common cold was higher in Western medical institutions than in Korean medical institutions. However, the number of second visits was higher in Korean medical institutions. Acupuncture is the most commonly used medical treatment in Korean medical institutions for common cold. Herbal medicine for common cold was usually prescribed for 2-3 days for children and adolescents. Conclusions Although the average medical cost of Korean medical institutions was higher than that of Western medical institutions, the rate of second visits to Korean medical institutions was higher because of the demand for Korean medical treatment

빅데이터 처리 프로세스 및 활용 (Big Data Processing and Utilization)

  • 이성훈;이동우
    • 디지털융복합연구
    • /
    • 제11권4호
    • /
    • pp.267-271
    • /
    • 2013
  • 우리사회는 점점 더 융/복합 현상이 가속화되고, 광범위한 영역으로 확대되고 있다. 이러한 중심축에는 정보통신 기술이 자리잡고 있음은 당연한 일이다. 일례로 정보통신기술과 의료산업의 융합의 결과로 스마트 헬스케어 산업이 등장하였으며, 모든 분야에 정보통신 기술을 접목하고자 하는 노력들이 계속되고 있다. 이로 인해 우리주변에는 수많은 디지털 데이터들이 만들어지고 있다. 또 다른 한편으로는 대중화 되고 있는 스마트폰, 태블릿PC와 카메라, 게임기기등을 통하여 다양한 데이터들이 생성되고 있다. 본 연구에서는 광범위하게 발생하고 있는 빅데이터에 대한 활용 상태를 알아보고 빅데이터 플랫폼의 한 축인 처리 프로세스들에 대해 비교, 분석하였다.