• Title/Summary/Keyword: Median filtering forensic

Search Result 7, Processing Time 0.015 seconds

Forensic Decision of Median Filtering by Pixel Value's Gradients of Digital Image (디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.79-84
    • /
    • 2015
  • In a distribution of digital image, there is a serious problem that is a distribution of the altered image by a forger. For the problem solution, this paper proposes a median filtering (MF) image forensic decision algorithm using a feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value' gradients of original image then 1th~6th order coefficients to be six feature vector. And the reconstructed image is produced by the solution of Poisson's equation with the gradients. From the difference image between original and its reconstructed image, four feature vector (Average value, Max. value and the coordinate i,j of Max. value) is extracted. Subsequently, Two kinds of the feature vector combined to 10 Dim. feature vector that is used in the learning of a SVM (Support Vector Machine) classification for MF (Median Filtering) detector of the altered image. On the proposed algorithm of the median filtering detection, compare to MFR (Median Filter Residual) scheme that had the same 10 Dim. feature vectors, the performance is excellent at Unaltered, Averaging filtering ($3{\times}3$) and JPEG (QF=90) images, and less at Gaussian filtering ($3{\times}3$) image. However, in the measured performances of all items, AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.

Forensic Classification of Median Filtering by Hough Transform of Digital Image (디지털 영상의 허프 변환에 의한 미디언 필터링 포렌식 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.42-47
    • /
    • 2017
  • In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.

Forensic Decision of Median Filtering Image Using a Coefficient of Variation of Fourier Transform (Fourier 변환 변이계수를 이용한 미디언 필터링 영상의 포렌식 판정)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.67-73
    • /
    • 2015
  • In a distribution of digital image, there is a serious problem that is the image alteration by a forger. For the problem solution, this paper proposes the forensic decision algorithm of a median filtering (MF) image using the feature vector based on a coefficient of variation (c.v.) of Fourier transform. In the proposed algorithm, we compute Fourier transform (FT) coefficients of row and column line respectively of an image first, then c.v. between neighboring lines is computed. Subsquently, 10 Dim. feature vector is defined for the MF detection. On the experiment of MF detection, the proposed scheme is compared to MFR (Median Filter Residual) and Rhee's MF detection schemes that have the same 10 Dim. feature vector both. As a result, the performance is excellent at Unaltered, JPEG (QF=90), Down scaling (0.9) and Up scaling (1.1) images, and it showed good performance at Gaussian filtering ($3{\times}3$) image. However, in the performance evaluation of all measured items of the proposed scheme, AUC (Area Under ROC (Receiver Operating Characteristic) Curve) by the sensitivity and 1-specificity approached to 1 thus, it is confirmed that the grade of the performance evaluation is rated as 'Excellent (A)'.

Forgery Detection Scheme Using Enhanced Markov Model and LBP Texture Operator in Low Quality Images (저품질 이미지에서 확장된 마르코프 모델과 LBP 텍스처 연산자를 이용한 위조 검출 기법)

  • Agarwal, Saurabh;Jung, Ki-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1171-1179
    • /
    • 2021
  • Image forensic is performed to check image limpidness. In this paper, a robust scheme is discussed to detect median filtering in low quality images. Detection of median filtering assists in overall image forensic. Improved spatial statistical features are extracted from the image to classify pristine and median filtered images. Image array data is rescaled to enhance the spatial statistical information. Features are extracted using Markov model on enhanced spatial statistics. Multiple difference arrays are considered in different directions for robust feature set. Further, texture operator features are combined to increase the detection accuracy and SVM binary classifier is applied to train the classification model. Experimental results are promising for images of low quality JPEG compression.

Median Filtering Detection of Digital Images Using Pixel Gradients

  • RHEE, Kang Hyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.195-201
    • /
    • 2015
  • For median filtering (MF) detection in altered digital images, this paper presents a new feature vector that is formed from autoregressive (AR) coefficients via an AR model of the gradients between the neighboring row and column lines in an image. Subsequently, the defined 10-D feature vector is trained in a support vector machine (SVM) for MF detection among forged images. The MF classification is compared to the median filter residual (MFR) scheme that had the same 10-D feature vector. In the experiment, three kinds of test items are area under receiver operating characteristic (ROC) curve (AUC), classification ratio, and minimal average decision error. The performance is excellent for unaltered (ORI) or once-altered images, such as $3{\times}3$ average filtering (AVE3), QF=90 JPEG (JPG90), 90% down, and 110% up to scale (DN0.9 and Up1.1) images, versus $3{\times}3$ and $5{\times}5$ median filtering (MF3 and MF5, respectively) and MF3 and MF5 composite images (MF35). When the forged image was post-altered with AVE3, DN0.9, UP1.1 and JPG70 after MF3, MF5 and MF35, the performance of the proposed scheme is lower than the MFR scheme. In particular, the feature vector in this paper has a superior classification ratio compared to AVE3. However, in the measured performances with unaltered, once-altered and post-altered images versus MF3, MF5 and MF35, the resultant AUC by 'sensitivity' (TP: true positive rate) and '1-specificity' (FN: false negative rate) is achieved closer to 1. Thus, it is confirmed that the grade evaluation of the proposed scheme can be rated as 'Excellent (A)'.

Median Filtering Detection using Latent Growth Modeling (잠재성장모델링을 이용한 미디언 필터링 검출)

  • Rhee, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • In recent times, the median filtering (MF) detector as a forensic tool for the recovery of forgery images' processing history has concerned broad interest. For the classification of MF image, MF detector should be designed with smaller feature set and higher detection ratio. This paper presents a novel method for the detection of MF in altered images. It is transformed from BMP to several kinds of MF image by the median window size. The difference distribution values are computed according to the window sizes and then the values construct the feature set same as the MF window size. For the MF detector, the feature set transformed to the model specification which is computed using latent growth modeling (LGM). Through experiments, the test image is classified by the discriminant into two classes: the true positive (TP) and the false negative (FN). It confirms that the proposed algorithm is to be outstanding performance when the minimum distance average is 0.119 in the confusion of TP and FN for the effectivity of classification.

Downscaling Forgery Detection using Pixel Value's Gradients of Digital Image (디지털 영상 픽셀값의 경사도를 이용한 Downscaling Forgery 검출)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.47-52
    • /
    • 2016
  • The used digital images in the smart device and small displayer has been a downscaled image. In this paper, the detection of the downscaling image forgery is proposed using the feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value's gradients of the image. These coefficients as the feature vectors are used in the learning of a SVM (Support Vector Machine) classification for the downscaling image forgery detector. On the performance of the proposed algorithm, it is excellent at the downscaling 90% image forgery compare to MFR (Median Filter Residual) scheme that had the same 10-Dim. feature vectors and 686-Dim. SPAM (Subtractive Pixel Adjacency Matrix) scheme. In averaging filtering ($3{\times}3$) and median filtering ($3{\times}3$) images, it has a higher detection ratio. Especially, the measured performances of all items in averaging and median filtering ($3{\times}3$), AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.