• Title/Summary/Keyword: Median diffusion

Search Result 29, Processing Time 0.022 seconds

Nonlinear Anisotropic Diffusion Using Adaptive Weighted Median Filters (적응 가중 미디언 필터를 이용한 영상 확산 알고리즘)

  • Hwang, In-Ho;Lee, Kyung-Hoon;Kim, Woong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.542-549
    • /
    • 2007
  • Recently, many research activities in the image processing area are concentrated on developing new algorithms by finding the solution of the 'diffusion equation'. The diffusion algorithms are expected to be utilized in numerous applications including noise removal and image restoration, edge detection, segmentation, etc. In this paper, at first, it will be shown that the anisotropic diffusion algorithms have the similar structure with the adaptive FIR filters with cross-shaped 5-tap kernel, and this relatively small-sized kernel causes many iterating procedure for satisfactory filtering effects. Moreover, it will also be shown that lots of modifications which are adopted to the conventional Gaussian diffusion method in order to weaken the edge blurring nature of the linear filtering process increases another computational burden. We propose a new Median diffusion scheme by replacing the adaptive linear filters in the diffusion process with the AWM (Adaptive Weighted Median) filters. A diffusion-equation-based adaptation scheme is also proposed. With the proposed scheme, the size of the diffusion kernel can be increased, and thus diffusion speed greatly increases. Simulation results shows that the proposed Median diffusion scheme outperforms in noise removal (especially impulsive noise), and edge preservation.

A de-noising method based on connectivity strength between two adjacent pixels

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • The essential idea of de-noising is referring to neighboring pixels of a center pixel to be updated. Conventional adaptive de-noising filters use local statistics, i.e., mean and variance, of neighboring pixels including the center pixel. The drawback of adaptive de-noising filters is that their performance becomes low when edges are contained in neighboring pixels, while anisotropic diffusion de-noising filters remove adaptively noises and preserve edges considering intensity difference between neighboring pixel and the center pixel. The anisotropic diffusion de-noising filters, however, use only intensity difference between neighboring pixels and the center pixel, i.e., local statistics of neighboring pixels and the center pixel are not considered. We propose a new connectivity function of two adjacent pixels using statistics of neighboring pixels and apply connectivity function to diffusion coefficient. Experimental results using an aerial image corrupted by uniform and Gaussian noises showed that the proposed algorithm removed more efficiently noises than conventional diffusion filter and median filter.

Effect of the Pore Structure of Concrete on the Compressive Strength of Concrete and Chloride Ions Diffusivity into the Concrete

  • Kim, Jin-Cheol;Paeng, Woo-Seon;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.345-351
    • /
    • 2003
  • The transport characteristics of deleterious ions such as chlorides depend on the pore structures of concrete and are the major factors in the durability of concrete structures in subjected to chloride attack such as in marine environments. In this paper, the effect of the pore structure on compressive strength and chloride diffusivity of concrete was investigated. Six types of concretes were tested. The pore volume of concrete containing mineral admixtures increased in the range of 3∼30nm due to micro filling effect of hydrates of the mineral admixtures. There was a good correlation between the median pore diameter, the pore volume above 50nm and compressive strength of concrete, but there was not a significant correlation between the total pore volume and compressive strength. The relationship between compressive strength and chloride diffusivity were not well correlated, however, pore volume above 50nm were closely related to the chloride diffusion coefficient.

A Study on the Tensor-Valued Median Filter Using the Modified Gradient Descent Method in DT-MRI (확산텐서자기공명영상에서 수정된 기울기강하법을 이용한 텐서 중간값 필터에 관한 연구)

  • Kim, Sung-Hee;Kwon, Ki-Woon;Park, In-Sung;Han, Bong-Soo;Kim, Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.817-824
    • /
    • 2007
  • Tractography using Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of the principal eigenvector in the white matter of the brain. However, the fiber tracking methods suffer from the noise included in the diffusion tensor images that affects the determination of the principal eigenvector. As the fiber tracking progresses, the accumulated error creates a large deviation between the calculated fiber and the real fiber. This problem of the DT-MRI tractography is known mathematically as the ill-posed problem which means that tractography is very sensitive to perturbations by noise. To reduce the noise in DT-MRI measurements, a tensor-valued median filter which is reported to be denoising and structure-preserving in fiber tracking, is applied in the tractography. In this paper, we proposed the modified gradient descent method which converges fast and accurately to the optimal tensor-valued median filter by changing the step size. In addition, the performance of the modified gradient descent method is compared with others. We used the synthetic image which consists of 45 degree principal eigenvectors and the corticospinal tract. For the synthetic image, the proposed method achieved 4.66%, 16.66% and 15.08% less error than the conventional gradient descent method for error measures AE, AAE, AFA respectively. For the corticospinal tract, at iteration number ten the proposed method achieved 3.78%, 25.71 % and 11.54% less error than the conventional gradient descent method for error measures AE, AAE, AFA respectively.

Imaging Patterns of Bacillus Calmette-Guérin-Related Granulomatous Prostatitis Based on Multiparametric MRI

  • Seungsoo Lee;Young Taik Oh;Hye Min Kim;Dae Chul Jung;Hyesuk Hong
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.60-67
    • /
    • 2022
  • Objective: To categorize multiparametric MRI features of Bacillus Calmette-Guérin (BCG)-related granulomatous prostatitis (GP) and discover potential manifestations for its differential diagnosis from prostate cancer. Materials and Methods: The cases of BCG-related GP in 24 male (mean age ± standard deviation, 66.0 ± 9.4 years; range, 50-88 years) pathologically confirmed between January 2011 and April 2019 were retrospectively reviewed. All patients underwent intravesical BCG therapy followed by a MRI scan. Additional follow-up MRI scans, including diffusion-weighted imaging (DWI), were performed in 19 patients. The BCG-related GP cases were categorized into three: A, B, or C. The lesions with diffusion restriction and homogeneous enhancement were classified as type A. The lesions with diffusion restriction and a poorly enhancing component were classified as type B. A low signal intensity on high b-value DWI (b = 1000 s/mm2) was considered characteristic of type C. Two radiologists independently interpreted the MRI scans before making a consensus about the types. Results: The median lesion size was 22 mm with the interquartile range (IQR) of 18-26 mm as measured using the initial MRI scans. The lesion types were A, B, and C in 7, 15, and 2 patients, respectively. Cohen's kappa value for the inter-reader agreement for the interpretation of the lesion types was 0.837. On the last follow-up MRI scans of 19 patients, the size decreased (median, 5.8 mm; IQR, 3.4-8.5 mm), and the type changed from A or B to C in 11 patients. The lesions resolved in four patients. In five patients who underwent prostatectomy, caseous necrosis on histopathology matched with the non-enhancing components of type B lesions and the entire type C lesions. Conclusion: BCG-related GP demonstrated three imaging patterns on multiparametric MRI. Contrast-enhanced T1-weighted imaging and DWI may play a role in its differential diagnosis from prostate cancer.

Diagnostic Performance of Diffusion-Weighted Steady-State Free Precession in Differential Diagnosis of Neoplastic and Benign Osteoporotic Vertebral Compression Fractures: Comparison to Diffusion-Weighted Echo-Planar Imaging

  • Shin, Jae Ho;Jeong, Soh Yong;Lim, Jung Hyun;Park, Jeongmi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.3
    • /
    • pp.154-161
    • /
    • 2017
  • Purpose: To evaluate the diagnostic performance of diffusion-weighted steady-state free precession (DW-SSFP) in comparison to diffusion-weighted echo-planar imaging (DW-EPI) for differentiating the neoplastic and benign osteoporotic vertebral compression fractures. Materials and Methods: The subjects were 40 patients with recent vertebral compression fractures but no history of vertebroplasty, spine operation, or chemotherapy. They had received 3-Tesla (T) spine magnetic resonance imaging (MRI), including both DW-SSFP and DW-EPI sequences. The 40 patients included 20 with neoplastic vertebral fracture and 20 with benign osteoporotic vertebral fracture. In each fracture lesion, we obtained the signal intensity normalized by the signal intensity of normal bone marrow (SI norm) on DW-SSFP and the apparent diffusion coefficient (ADC) on DW-EPI. The correlation between the SI norm and the ADC in each lesion was analyzed using linear regression. The optimal cut-off values for the diagnosis of neoplastic fracture were determined in each sequence using Youden's J statistics and receiver operating characteristic curve analyses. Results: In the neoplastic fracture, the median SI norm on DW-SSFP was higher and the median ADC on DW-EPI was lower than the benign osteoporotic fracture (5.24 vs. 1.30, P = 0.032, and 0.86 vs. 1.48, P = 0.041, respectively). Inverse linear correlations were evident between SI norm and ADC in both neoplastic and benign osteoporotic fractures (r = -0.45 and -0.61, respectively). The optimal cut-off values for diagnosis of neoplastic fracture were SI norm of 3.0 in DW-SSFP with the sensitivity and specificity of 90.4% (95% confidence interval [CI]: 81.0-99.0) and 95.3% (95% CI: 90.0-100.0), respectively, and ADC of 1.3 in DW-EPI with the sensitivity and specificity of 90.5% (95% CI: 80.0-100.0) and 70.4% (95% CI: 60.0-80.0), respectively. Conclusion: In 3-T MRI, DW-SSFP has comparable sensitivity and specificity to DW-EPI in differentiating the neoplastic vertebral fracture from the benign osteoporotic vertebral fracture.

Simulation of electromigration behavior on ULSI′s interconnect under pulsed DC stress : frequency, duty factor, temperature effect (Pulsed DC 조건에서 반도체 배선의 electromigration 시뮬레이션 : 주파수, duty factor, 온도효과)

  • 이동현;안진호;박영준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.40-42
    • /
    • 2002
  • Electromigration is atomic diffusion driven by a momentum transfer from conducting electrons. With every new generation of intergrated circuits, interconnect line widths have been reduced and current densities in the interconnect have become higher. This leads to an increase in the threat to interconnect reliability due to electromigration. In this paper, we simulated stress evolution with changing temperature, duty factor(ratio of on time and pulse time), frequency under pulsed DC condition. As a result, we predict MTF(median time to failure) and found that exponent n is affected by changing temperature, duty factor.

  • PDF

Occurrence and distribution of indoor volatile organic compounds in residential spaces by sampling methods (시료채취 방식에 따른 주거 공간 내 휘발성유기화합물 발생 특성 평가)

  • Lee, Suyeon;Kim, Daekeun
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.362-371
    • /
    • 2018
  • Indoor Volatile organic compounds (VOCs) are classified as known or possible toxicants and odorants. This study characterized VOC levels in 11 homes in an area in the capital of Seoul by using two different methods of VOCs sampling, which are the active sampling using a thermal sorption tube and the passive sampling using a diffusion sampler. When using the active sampling method, the total target VOC concentration ranged from 41.7 to $420.7{\mu}g/m^3$ (mean $230.4{\mu}g/m^3$ ; median $221.8{\mu}g/m^3$) during winter and 21.3 to $1,431.9{\mu}g/m^3$ (mean $340.1{\mu}g/m^3$; median $175.4{\mu}g/m^3$) during summer. When using the passive method, 29.6 to $257.5{\mu}g/m^3$ (mean $81.8{\mu}g/m^3$; median $49.4{\mu}g/m^3$) during winter and 1.2 to $5,131.1{\mu}g/m^3$ (mean $1,758.8{\mu}g/m^3$; median $1,375.1{\mu}g/m^3$) during summer. Forty-nine VOCs were quantified and toluene showed the highest concentration regardless of the season and the sampling method studied. The distribution of VOCs was relatively varied by using the active method. However, it showed a low correlation with indoor environmental factors such as room temperature, humidity and ventilation time. The correlation between indoor environmental factors and VOCs were relatively high in the passive method. In particular, these characteristics were confirmed by principal component analysis.

Image Enhancement of Image Intensifying Device in Extremely Low-Light Levels using Multiple Filters and Anisotropic Diffusion (다중필터와 이방성 확산을 이용한 극 저조도 조건에서의 미광증폭장비 영상 개선)

  • Moon, Jin-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.36-41
    • /
    • 2018
  • An image intensifying device is equipment that makes weak objects visible in a dark environment, such as making nighttime bright enough to let objects be visually observed. It is possible to obtain a clear image by amplifying the light in the presence of a certain amount of weak light. However, in an extremely low-light environment, where even moonlight is not present, there is not enough light to amplify anything, and the sharpness of the screen deteriorates. In this paper, a method is proposed to improve image quality by using multiple filters and anisotropic diffusion for output noise of the image-intensifying device in extreme low-light environments. For the experiment, the output of the image-intensifying device was obtained under extremely low-light conditions, and signal processing for improving the image quality was performed. The configuration of the filters for signal processing uses anisotropic diffusion after applying a median filter and a Wiener filter for effective removal of salt-and-pepper noise and Gaussian noise, which constitute the main noise appearing in the image. Experimental results show that the improvement visually enhanced image quality. Both peak signal-to-noise ratio (PSNR) and SSIM, which are quantitative indicators, show improved values.

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.