Journal of the Institute of Electronics and Information Engineers
/
v.52
no.6
/
pp.79-84
/
2015
In a distribution of digital image, there is a serious problem that is a distribution of the altered image by a forger. For the problem solution, this paper proposes a median filtering (MF) image forensic decision algorithm using a feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value' gradients of original image then 1th~6th order coefficients to be six feature vector. And the reconstructed image is produced by the solution of Poisson's equation with the gradients. From the difference image between original and its reconstructed image, four feature vector (Average value, Max. value and the coordinate i,j of Max. value) is extracted. Subsequently, Two kinds of the feature vector combined to 10 Dim. feature vector that is used in the learning of a SVM (Support Vector Machine) classification for MF (Median Filtering) detector of the altered image. On the proposed algorithm of the median filtering detection, compare to MFR (Median Filter Residual) scheme that had the same 10 Dim. feature vectors, the performance is excellent at Unaltered, Averaging filtering ($3{\times}3$) and JPEG (QF=90) images, and less at Gaussian filtering ($3{\times}3$) image. However, in the measured performances of all items, AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.5
/
pp.42-47
/
2017
In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.
IEIE Transactions on Smart Processing and Computing
/
v.4
no.4
/
pp.195-201
/
2015
For median filtering (MF) detection in altered digital images, this paper presents a new feature vector that is formed from autoregressive (AR) coefficients via an AR model of the gradients between the neighboring row and column lines in an image. Subsequently, the defined 10-D feature vector is trained in a support vector machine (SVM) for MF detection among forged images. The MF classification is compared to the median filter residual (MFR) scheme that had the same 10-D feature vector. In the experiment, three kinds of test items are area under receiver operating characteristic (ROC) curve (AUC), classification ratio, and minimal average decision error. The performance is excellent for unaltered (ORI) or once-altered images, such as $3{\times}3$ average filtering (AVE3), QF=90 JPEG (JPG90), 90% down, and 110% up to scale (DN0.9 and Up1.1) images, versus $3{\times}3$ and $5{\times}5$ median filtering (MF3 and MF5, respectively) and MF3 and MF5 composite images (MF35). When the forged image was post-altered with AVE3, DN0.9, UP1.1 and JPG70 after MF3, MF5 and MF35, the performance of the proposed scheme is lower than the MFR scheme. In particular, the feature vector in this paper has a superior classification ratio compared to AVE3. However, in the measured performances with unaltered, once-altered and post-altered images versus MF3, MF5 and MF35, the resultant AUC by 'sensitivity' (TP: true positive rate) and '1-specificity' (FN: false negative rate) is achieved closer to 1. Thus, it is confirmed that the grade evaluation of the proposed scheme can be rated as 'Excellent (A)'.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.11
/
pp.2715-2720
/
2014
Median filtering is very effective to remove impulse type noises, so it has been widely used in many signal processing applications. However, due to the time complexity of its non-linearity, median filtering is often used using a small filter window size. A lot of work has been done on devising fast median filtering algorithms, but most of them can be efficiently applied to input data with finite integer values like images. Little work has been carried out on fast 2-d median filtering algorithms that can deal with real-valued 2-d data. In this paper, a fast and simple median 2-d filter is presented, and its performance is compared with the Matlab's 2-d median filter and a heap-based 2-d median filter. The proposed algorithm is shown to be much faster than the Matlab's 2-d median filter and consistently faster than the heap-based algorithm that is much more complicated than the proposed one. Also, a more efficient median filtering scheme for 2-d real valued data with a finite range of values is presented that uses higher-bit integer 2-d median filtering with negligible quantization errors.
Journal of information and communication convergence engineering
/
v.7
no.4
/
pp.535-538
/
2009
Speckle noise reduction for ultrasound CT image using morphological adaptive median filtering based on edge preservation is presented in this paper. Speckle noise is multiplicative feature and causes ultrasound image to degrade widely from transducer. An input image is classified into edge region and homogeneous region in preprocessing. The speckle is reduced by morphological operation on the 2D gray scale by using convolution and correlation, and edges are preserved. The adaptive median is processed to reduce an impulse noise to preserve edges. As the result, MAM of the proposed method enhances the image to about 10% in comparison with Winner filter by Edge Preservation Index and PSNR, and 10% to only adaptive median filtering.
UAV have the disadvantage that are weak from rainfall or winds due to the light platform, so use Scale-Invariant Feature Transform (SIFT) method which extrude keypoints in image matching process. To find the efficient filtering method for the construction of precise Digital Terrain Model (DTM) using UAV images, comparatively analyzed sobel and Differential of Gaussian (DoG) and found sobel is more efficient way to extrude buildings, trees, and so on. And edges are extruded more clearly when applying median additionally which have the merit of preserving edge and eliminating noise. In this study, applied sobel-median filtering which plus median to sobel and constructed the 1st filtered DTM that extrude building and trees and 2nd filtered DTM that extrude cars by threshold of gradient, Analysis of the degree of accuracy improvement showed that standard deviations of 1st filtered DTM and 2nd filtered DTM are 0.32m, 0.287m respectively, and both are acceptable for the tolerance of 0.33m for elevation points of 1/1,000 digital map, and the accuracy was increased about 10% by filtering automobiles. Plus, moving things are changed those position and direction in every image, and these are not target to filter because of the characteristic that is excluded from SIFT method.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.2
/
pp.207-213
/
2014
In this paper, we propose a modified median filter for impulse noise reduction. The proposed method based on multi-step finds noisy pixels from the corrupted image and applies filtering on the noisy pixels. Neighbor pixels for filtering are filtered by linear filter which adjusts filtering direction according to an edge. Thus, our proposed method not only preserves edge, but also reduces noise in uniform region. Experimental results show that our proposed method has better quality than those by existing modified median filtering method.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.5
/
pp.601-607
/
2018
Median filtering is a nonlinear method which is known to be effective in removing impulse noise while preserving local image structure relatively well. However, it could still suffer the smearing phenomena of edges and fine details into neighbors due to undesirable influence from the pixels whose values are far off from the true value of the pixel at hand. This drawback mainly comes from the fact that median filters typically employ a regular shape window for collecting the pixels used in the filtering operation. In this paper, we propose a median filtering method which employs an irregular shape filter window in collecting neighboring pixels around the pixel to be denoised. By employing an irregular shape window, we can achieve good noise suppression while preserving image details. Experimental results have shown that our approach is superior to regular window-based methods.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.8
/
pp.67-73
/
2015
In a distribution of digital image, there is a serious problem that is the image alteration by a forger. For the problem solution, this paper proposes the forensic decision algorithm of a median filtering (MF) image using the feature vector based on a coefficient of variation (c.v.) of Fourier transform. In the proposed algorithm, we compute Fourier transform (FT) coefficients of row and column line respectively of an image first, then c.v. between neighboring lines is computed. Subsquently, 10 Dim. feature vector is defined for the MF detection. On the experiment of MF detection, the proposed scheme is compared to MFR (Median Filter Residual) and Rhee's MF detection schemes that have the same 10 Dim. feature vector both. As a result, the performance is excellent at Unaltered, JPEG (QF=90), Down scaling (0.9) and Up scaling (1.1) images, and it showed good performance at Gaussian filtering ($3{\times}3$) image. However, in the performance evaluation of all measured items of the proposed scheme, AUC (Area Under ROC (Receiver Operating Characteristic) Curve) by the sensitivity and 1-specificity approached to 1 thus, it is confirmed that the grade of the performance evaluation is rated as 'Excellent (A)'.
A new nonlinear filtering algorithm for effectively denoising images corrupted by the random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e. Impulse noise detection and noise filtering. Initially, the impulse noise detection stage of DSSSM algorithm begins by processing the statistics of a localized detection window in sorted order and non-sorted order, simultaneously. Next, the median of absolute difference (MAD) obtained from both sorted statistics and non-sorted statistics will be further processed in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the detected noise pixels with the estimated median value of the surrounding pixels. In addition, fuzzy based local information is used in the filtering stage to help the filter preserves the edges and details. Extensive simulations results conducted on gray scale images indicate that the DSSSM filter performs significantly better than a number of well-known impulse noise filters existing in literature in terms of noise suppression and detail preservation; with as much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically simple and suitable to be implemented for electronic imaging products.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.