• Title/Summary/Keyword: Median Filtering

Search Result 185, Processing Time 0.028 seconds

Forensic Decision of Median Filtering by Pixel Value's Gradients of Digital Image (디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.79-84
    • /
    • 2015
  • In a distribution of digital image, there is a serious problem that is a distribution of the altered image by a forger. For the problem solution, this paper proposes a median filtering (MF) image forensic decision algorithm using a feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value' gradients of original image then 1th~6th order coefficients to be six feature vector. And the reconstructed image is produced by the solution of Poisson's equation with the gradients. From the difference image between original and its reconstructed image, four feature vector (Average value, Max. value and the coordinate i,j of Max. value) is extracted. Subsequently, Two kinds of the feature vector combined to 10 Dim. feature vector that is used in the learning of a SVM (Support Vector Machine) classification for MF (Median Filtering) detector of the altered image. On the proposed algorithm of the median filtering detection, compare to MFR (Median Filter Residual) scheme that had the same 10 Dim. feature vectors, the performance is excellent at Unaltered, Averaging filtering ($3{\times}3$) and JPEG (QF=90) images, and less at Gaussian filtering ($3{\times}3$) image. However, in the measured performances of all items, AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.

Forensic Classification of Median Filtering by Hough Transform of Digital Image (디지털 영상의 허프 변환에 의한 미디언 필터링 포렌식 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.42-47
    • /
    • 2017
  • In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.

Median Filtering Detection of Digital Images Using Pixel Gradients

  • RHEE, Kang Hyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.195-201
    • /
    • 2015
  • For median filtering (MF) detection in altered digital images, this paper presents a new feature vector that is formed from autoregressive (AR) coefficients via an AR model of the gradients between the neighboring row and column lines in an image. Subsequently, the defined 10-D feature vector is trained in a support vector machine (SVM) for MF detection among forged images. The MF classification is compared to the median filter residual (MFR) scheme that had the same 10-D feature vector. In the experiment, three kinds of test items are area under receiver operating characteristic (ROC) curve (AUC), classification ratio, and minimal average decision error. The performance is excellent for unaltered (ORI) or once-altered images, such as $3{\times}3$ average filtering (AVE3), QF=90 JPEG (JPG90), 90% down, and 110% up to scale (DN0.9 and Up1.1) images, versus $3{\times}3$ and $5{\times}5$ median filtering (MF3 and MF5, respectively) and MF3 and MF5 composite images (MF35). When the forged image was post-altered with AVE3, DN0.9, UP1.1 and JPG70 after MF3, MF5 and MF35, the performance of the proposed scheme is lower than the MFR scheme. In particular, the feature vector in this paper has a superior classification ratio compared to AVE3. However, in the measured performances with unaltered, once-altered and post-altered images versus MF3, MF5 and MF35, the resultant AUC by 'sensitivity' (TP: true positive rate) and '1-specificity' (FN: false negative rate) is achieved closer to 1. Thus, it is confirmed that the grade evaluation of the proposed scheme can be rated as 'Excellent (A)'.

Fast Median Filtering Algorithms for Real-Valued 2-dimensional Data (실수형 2차원 데이터를 위한 고속 미디언 필터링 알고리즘)

  • Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2715-2720
    • /
    • 2014
  • Median filtering is very effective to remove impulse type noises, so it has been widely used in many signal processing applications. However, due to the time complexity of its non-linearity, median filtering is often used using a small filter window size. A lot of work has been done on devising fast median filtering algorithms, but most of them can be efficiently applied to input data with finite integer values like images. Little work has been carried out on fast 2-d median filtering algorithms that can deal with real-valued 2-d data. In this paper, a fast and simple median 2-d filter is presented, and its performance is compared with the Matlab's 2-d median filter and a heap-based 2-d median filter. The proposed algorithm is shown to be much faster than the Matlab's 2-d median filter and consistently faster than the heap-based algorithm that is much more complicated than the proposed one. Also, a more efficient median filtering scheme for 2-d real valued data with a finite range of values is presented that uses higher-bit integer 2-d median filtering with negligible quantization errors.

Edge Preserving Speckle Reduction of Ultrasound Image with Morphological Adaptive Median Filtering

  • Ryu, Kwang-Ryol;Jung, Eun-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.535-538
    • /
    • 2009
  • Speckle noise reduction for ultrasound CT image using morphological adaptive median filtering based on edge preservation is presented in this paper. Speckle noise is multiplicative feature and causes ultrasound image to degrade widely from transducer. An input image is classified into edge region and homogeneous region in preprocessing. The speckle is reduced by morphological operation on the 2D gray scale by using convolution and correlation, and edges are preserved. The adaptive median is processed to reduce an impulse noise to preserve edges. As the result, MAM of the proposed method enhances the image to about 10% in comparison with Winner filter by Edge Preservation Index and PSNR, and 10% to only adaptive median filtering.

The Construction Method of Precise DTM of UAV Images Using Sobel-median Filtering (소벨-메디언 필터링을 이용한 UAV 영상의 정밀 DTM 구축 방법에 관한 연구)

  • Na, Young-Woo
    • Journal of Urban Science
    • /
    • v.12 no.2
    • /
    • pp.43-52
    • /
    • 2023
  • UAV have the disadvantage that are weak from rainfall or winds due to the light platform, so use Scale-Invariant Feature Transform (SIFT) method which extrude keypoints in image matching process. To find the efficient filtering method for the construction of precise Digital Terrain Model (DTM) using UAV images, comparatively analyzed sobel and Differential of Gaussian (DoG) and found sobel is more efficient way to extrude buildings, trees, and so on. And edges are extruded more clearly when applying median additionally which have the merit of preserving edge and eliminating noise. In this study, applied sobel-median filtering which plus median to sobel and constructed the 1st filtered DTM that extrude building and trees and 2nd filtered DTM that extrude cars by threshold of gradient, Analysis of the degree of accuracy improvement showed that standard deviations of 1st filtered DTM and 2nd filtered DTM are 0.32m, 0.287m respectively, and both are acceptable for the tolerance of 0.33m for elevation points of 1/1,000 digital map, and the accuracy was increased about 10% by filtering automobiles. Plus, moving things are changed those position and direction in every image, and these are not target to filter because of the characteristic that is excluded from SIFT method.

Modified median filter based on multi-step (다단계 기반 수정된 미디언 필터)

  • Kim, Young-Ro;Dong, Sung-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.207-213
    • /
    • 2014
  • In this paper, we propose a modified median filter for impulse noise reduction. The proposed method based on multi-step finds noisy pixels from the corrupted image and applies filtering on the noisy pixels. Neighbor pixels for filtering are filtered by linear filter which adjusts filtering direction according to an edge. Thus, our proposed method not only preserves edge, but also reduces noise in uniform region. Experimental results show that our proposed method has better quality than those by existing modified median filtering method.

Efficient Median Filter Using Irregular Shape Window

  • Pok, Gou Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.601-607
    • /
    • 2018
  • Median filtering is a nonlinear method which is known to be effective in removing impulse noise while preserving local image structure relatively well. However, it could still suffer the smearing phenomena of edges and fine details into neighbors due to undesirable influence from the pixels whose values are far off from the true value of the pixel at hand. This drawback mainly comes from the fact that median filters typically employ a regular shape window for collecting the pixels used in the filtering operation. In this paper, we propose a median filtering method which employs an irregular shape filter window in collecting neighboring pixels around the pixel to be denoised. By employing an irregular shape window, we can achieve good noise suppression while preserving image details. Experimental results have shown that our approach is superior to regular window-based methods.

Forensic Decision of Median Filtering Image Using a Coefficient of Variation of Fourier Transform (Fourier 변환 변이계수를 이용한 미디언 필터링 영상의 포렌식 판정)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.67-73
    • /
    • 2015
  • In a distribution of digital image, there is a serious problem that is the image alteration by a forger. For the problem solution, this paper proposes the forensic decision algorithm of a median filtering (MF) image using the feature vector based on a coefficient of variation (c.v.) of Fourier transform. In the proposed algorithm, we compute Fourier transform (FT) coefficients of row and column line respectively of an image first, then c.v. between neighboring lines is computed. Subsquently, 10 Dim. feature vector is defined for the MF detection. On the experiment of MF detection, the proposed scheme is compared to MFR (Median Filter Residual) and Rhee's MF detection schemes that have the same 10 Dim. feature vector both. As a result, the performance is excellent at Unaltered, JPEG (QF=90), Down scaling (0.9) and Up scaling (1.1) images, and it showed good performance at Gaussian filtering ($3{\times}3$) image. However, in the performance evaluation of all measured items of the proposed scheme, AUC (Area Under ROC (Receiver Operating Characteristic) Curve) by the sensitivity and 1-specificity approached to 1 thus, it is confirmed that the grade of the performance evaluation is rated as 'Excellent (A)'.

Dual Sliding Statistics Switching Median Filter for the Removal of Low Level Random-Valued Impulse Noise

  • Suid, Mohd Helmi;Jusof, M F.M.;Ahmad, Mohd Ashraf
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1383-1391
    • /
    • 2018
  • A new nonlinear filtering algorithm for effectively denoising images corrupted by the random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e. Impulse noise detection and noise filtering. Initially, the impulse noise detection stage of DSSSM algorithm begins by processing the statistics of a localized detection window in sorted order and non-sorted order, simultaneously. Next, the median of absolute difference (MAD) obtained from both sorted statistics and non-sorted statistics will be further processed in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the detected noise pixels with the estimated median value of the surrounding pixels. In addition, fuzzy based local information is used in the filtering stage to help the filter preserves the edges and details. Extensive simulations results conducted on gray scale images indicate that the DSSSM filter performs significantly better than a number of well-known impulse noise filters existing in literature in terms of noise suppression and detail preservation; with as much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically simple and suitable to be implemented for electronic imaging products.