• Title/Summary/Keyword: Medial vestibular nuclear neurons

Search Result 7, Processing Time 0.022 seconds

Effects of Sphingosine-1-phosphate on Vestibular Nuclear Neurons

  • Lee, Jae-Hyuk;Jang, Su-Jeong;Kim, Song-Hee;Jeong, Han-Seong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • This study was designed to investigate the effects of sphingosine-1-phosphate on the neuronal activity of rat medial vestibular nuclear neurons. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated medial vestibular nuclear neurons were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 15 medial vestibular nuclear neurons revealed excitatory responses to 1 and $5\;{\mu}M$ of sphingosine-1-phosphate. The spike frequency and resting membrane potential of these cells were increased by sphingosine-1-phosphate. The amplitude of afterhyperpolarization was decreased by sphingosine-1-phosphate. Whole potassium currents of medial vestibular nuclear neurons were decreased by sphingosine-1-phosphate (n=12). Sphingosine-1-phosphate did not affect the charybdotoxin-treated potassium currents. These experimental results suggest that sphingosine-1-phosphate increases the neuronal activity of the medial vestibular nuclear neurons by altering the resting membrane potential and afterhyperpolarization.

Effects of Phenylephrine on the Excitability of Medial Vestibular Nuclear Neurons in Rats

  • Jeong, Han-Seong;Huh, Hae-Ryong;Jang, Myung-Joo;Hong, Seol-Hee;Jang, Su-Jeong;Park, Jin;Lee, Seung-Han;Kim, Jae-Ha;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • Coeruleo-vestibular pathway which connects locus coeruleus and vestibular nuclei is noradrenergic. This study was designed to elucidate the effects of phenylephrine on the spontaneous activity of acutely isolated medial vestibular nuclear neurons of rat by whole-cell patch-clamp technique. Sprague-Dawley rats, aged 14 to 16 days, were used. After enzymatic digestion, dissociated medial vestibular neurons were transferred to a recording chamber mounted on an inverted microscope, and spontaneous action potentials were recorded by standard patch-clamp techniques. In current-clamp mode, the frequency of spontaneous action potential of medial vestibular nuclear neurons was decreased by phenylephrine (n=15). Phenylephrine increased the amplitude of afterhyperpolarization without changes in the resting membrane potential and spike width. In voltage-clamp mode, the whole potassium currents of the medial vestibular nuclear neurons were increased by phenylephrine (n=12). These experimental results suggest that ${\alpha}-receptor$ mediates the inhibitory effects on the neuronal activity of the medial vestibular nuclear neuron.

Effects of a ${\delta}-opioid$ Agonist on the Brainstem Vestibular Nuclear Neuronal Activity of Rats

  • Kim, Tae-Sun;Huang, Mei;Jang, Myung-Joo;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2005
  • This study was undertaken to investigate the effects of [$D-Ala^2$, D-Leu^5$]-enkephalin (DADLE) on the spontaneous activity of medial vestibular nuclear neurons of the rat. Sprague-Dawley rats, aged 14 to 16 days, were anesthetized with ether and decapitated. After enzymatic digestion, the brain stem portion of medial vestibular nuclear neuron was obtained by micropunching. The dissociated neurons were transferred to a recording chamber mounted on an inverted microscope, and spontaneous action potentials were recorded by standard patch-clamp techniques. The spontaneous action potentials were increased by DADLE in 12 cells and decreased in 3 cells. The spike frequency and resting membrane potential of these cells were increased by DADLE. The depth of afterhyperpolarization was not affected by DADLE. The potassium currents were decreased in 20 cells and increased in 5 cells. These results suggest that DADLE increases the neuronal activity of the medial vestibular nuclear neurons by altering resting membrane potential.

Roles of Nitric Oxide in Vestibular Compensation

  • Jeong, Han-Seong;Jun, Jae-Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.73-77
    • /
    • 2003
  • The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy (UL) were studied. Sprague-Dawley male rats, treated with nitric oxide liberating agent sodium nitroprusside (SNP) and NOS inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME), were subjected to destruction of the unilateral vestibular apparatus, and then spontaneous nystagmus was observed in the rat. To explore the effects of nitric oxide on the neuronal excitability, whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus in SNP treated rats was lesser than that of spontaneous nystagmus in control animals. In contrast, pre-UL treatment with L-NAME resulted in a significant increase in spontaneous nystagmus frequency. In addition, SNP increased the frequency of spontaneous action potential in isolated medial vestibular nuclear neurons. Potassium currents of the vestibular nuclear neurons were inhibited by SNP. After blockade of calcium dependent potassium currents by high EGTA (11 mM) in a pipette solution, SNP did not inhibit outward potassium currents. 1H-[1,2,4] oxadiazolo [4,3-a] quinozalin-1-one (ODQ), a specific inhibitor of soluble guanylyl cyclase, inhibited the effects of SNP on the spontaneous firing and the potassium current. These results suggest that nitric oxide after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cGMP, and consequently would increase excitability in ipsilateral vestibular nuclear neurons.

Electroacupuncture of $GB_{43}$ Modulates Neuronal Activities in Medial Vestibular Nuclei of Rats (협계(俠谿)에 대한 전침자극이 흰쥐의 내측 전정신경핵 자발활동성에 미치는 효과)

  • Kim, Jae-Hyo;Park, Byung-Rim;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.25 no.3
    • /
    • pp.117-135
    • /
    • 2008
  • Objectives: It is known that the vestibular imbalance leads to vestibular symptoms such as nausea, vomiting, vertigo and postural disturbance. Since the non-labyrinthine inputs from the limbs and viscera converge on the vestibular nucleus neurons receiving signal from peripheral vestibular endorgan, acupuncture to the periphery may influence the activities of vestibular nuclear neurons and produce a therapeutic effect on the vestibulacr symptoms. The present study was to examine a modification and characteristics of the static and dynamic activities of medial vestibular nucleus (MVN) neurons following electroacupuncture (EA) of GB43' acupoint. Methods: In 54 Sprague-Dawley adult male rats weighing 250${\sim}$300g, spontaneous firing discharges and dynamic responses induced by sinusoidal whole body rotation about vertical axis at 0.2 Hz were observed in MVN of rats during EA of GB43' acupoint, located between the left 4th and 5th toe, which is the territory of sural and peroneal nerves, with 0.2 ms, 40 Hz and 600${\pm}$200 ${\mu}A$. Results: EA of the left GB43' acupoint induced modifications of spontaneous firing rates in 45% of MVN neurons recorded, and the percentage of modified neurons was 44% in type I, 52% in type II and 46% in non-type neurons. The excitatory or inhibitory responses of spontaneous firing discharges were predominant in the ipsilateral MVN neurons during EA. The excitatory response was abolished after EA but the inhibitory response was prolonged after EA in the ipsilateral MVN. The neurons of MVN showing modified spontaneous firing discharges by EA showed lower frequency (${\geq}$10 spikes/sec) of mean spontaneous firing rates than non affected ones. Conclusion: These results suggest that the neuronal activities of MVN neurons were influenced by EA of GB43' acupoint and the effects of EA may be related to the convergence of the peripheral vestibular inputs and ascending somatosensory inputs on MVN.

  • PDF

Application of Tetrode Technology for Analysis of Changes in Neural Excitability of Medial Vestibular Nucleus by Acute Arterial Hypotension (급성저혈압에 의한 내측전정신경핵 신경세포의 흥분성 변화를 분석하기 위한 테트로드 기법의 적용)

  • Kim, Young;Koo, Ho;Park, Byung Rim;Moon, Se Jin;Yang, Seung-Bum;Kim, Min Sun
    • Research in Vestibular Science
    • /
    • v.17 no.4
    • /
    • pp.142-151
    • /
    • 2018
  • Objectives: Excitability o medial vestibular nucleus (MVN) in the brainstem can be affected by changes in the arterial blood pressure. Several animal studies have demonstrated that acute hypotension results in the alteration of multiunit activities and expression of cFos protein in the MVN. In the field of extracellular electrophysiological recording, tetrode technology and spike sorting algorithms can easily identify single unit activity from multiunit activities in the brain. However, detailed properties of electrophysiological changes in single unit of the MVN during acute hypotension have been unknown. Methods: Therefore, we applied tetrode techniques and electrophysiological characterization methods to know the effect of acute hypotension on single unit activities of the MVN of rats. Results: Two or 3 types of unit could be classified according to the morphology of spikes and firing properties of neurons. Acute hypotension elicited 4 types of changes in spontaneous firing of single unit in the MVN. Most of these neurons showed excitatory responses for about within 1 minute after the induction of acute hypotension and then returned to the baseline activity 10 minutes after the injection of sodium nitroprusside. There was also gradual increase in spontaneous firing in some units. In contrast small proportion of units showed rapid reduction of firing rate just after acute hypotension. Conclusions: Therefore, application of tetrode technology and spike sorting algorithms is another method for the monitoring of electrical activity of vestibular nuclear during acute hypotension.

Effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin on the Neuronal Activity of Medial Vestibular Nuclear Neurons

  • Jang, Su-Jeong;Jeong, Han-Seong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • This study was designed to investigate direct effects of [D-$Pen^2$, D-$Pen^5$]-enkephalin, a $\delta$-opioid receptor agonist on the neuronal activity of medial vestibular nuclear (MVN) neurons by whole-cell configuration patch clamp experiments. The spike frequency of MVN neuron was increased to $9.50{\pm}0.55$ (P<0.05) and $10.56{\pm}0.66$ (P<0.05) by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin from the control level of $8.05{\pm}0.55$ spikes/sec, respectively (n=18). The resting membrane potential of the neurons was increased to $-37.86{\pm}0.92$ and $-36.97{\pm}0.97$ (P<0.05) from $-38.74{\pm}1.13\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The amplitude of afterhyperpolarization was decreased to $23.78{\pm}0.65$ and $21.67{\pm}0.89$ (P<0.05) from $23.73{\pm}0.53\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. The spike width was changed to $2.22{\pm}0.08$ and $2.24{\pm}0.07$ from $2.20{\pm}0.08\;mV$ by 5 and $10{\mu}M$ [D-$Pen^2$, D-$Pen^5$]-enkephalin, respectively. After pretreatment of naltrindole, a highly selective 8-opioid receptor antagonist, [D-$Pen^2$, D-$Pen^5$]-enkephalin did not change firing rate, resting membrane potential, afterhyperpolarization amplitude, and spike width of MVN neurons. The above experimental results suggest that [D-$Pen^2$, D-$Pen^5$]-enkephalin increases the neuronal activity of MVN neurons via inhibition of calcium-dependent potassium currents underlying the afterhyperpolarization.

  • PDF