• Title/Summary/Keyword: Media-based Learning

Search Result 938, Processing Time 0.028 seconds

Seeking for a Curriculum of Dance Department in the University in the Age of the 4th Industrial Revolution (4차 산업혁명시대 대학무용학과 커리큘럼의 방향모색)

  • Baek, Hyun-Soon;Yoo, Ji-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.3
    • /
    • pp.193-202
    • /
    • 2019
  • This study focuses on what changes are required as to a curriculum of dance department in the university in the age of the 4th industrial revolution. By comparing and analyzing the curricula of dance department in the five universities in Seoul, five academic subjects as to curricula of dance department, which covers what to learn for dance education in the age of the 4th industrial revolution, are presented. First, dance integrative education, the integration of creativity and science education, can be referred to as a subject that stimulates ideas and creativity and raises artistic sensitivity based on STEAM. Second, the curriculum characterized by prediction of the future prospect through Big Data can be utilized well in dealing with dance performance, career path of dance-majoring people, and job creation by analyzing public opinion, evaluation, and feelings. Third, video education. Seeing the images as modern major media tends to occupy most of the expressive area of art, dance by dint of video enables existing dance work to be created as new form of art, expanding dance boundaries in academic and performing art viewpoint. Fourth, VR and AR are essential techniques in the era of smart media. Whether upcoming dance studies are in the form of performance or education or industry, for VR and AR to be digitally applied into every relevant field, keeping with the time, learning about VR and AR is indispensable. Last, the 4th industrial revolution and the curriculum of dance art are needed to foresee the changes in the 4th industrial revolution and to educate changes, development and seeking in dance curriculum.

The development of resources for the application of 2020 Dietary Reference Intakes for Koreans (2020 한국인 영양소 섭취기준 활용 자료 개발)

  • Hwang, Ji-Yun;Kim, Yangha;Lee, Haeng Shin;Park, EunJu;Kim, Jeongseon;Shin, Sangah;Kim, Ki Nam;Bae, Yun Jung;Kim, Kirang;Woo, Taejung;Yoon, Mi Ock;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.21-35
    • /
    • 2022
  • The recommended meal composition allows the general people to organize meals using the number of intakes of foods from each of six food groups (grains, meat·fish·eggs·beans, vegetables, fruits, milk·dairy products and oils·sugars) to meet Dietary Reference Intakes for Koreans (KDRIs) without calculating complex nutritional values. Through an integrated analysis of data from the 6th to 7th Korean National Health and Nutrition Examination Surveys (2013-2018), representative foods for each food group were selected, and the amounts of representative foods per person were derived based on energy. Based on the EER by age and gender from the KDRIs, a total of 12 kinds of diets were suggested by differentiating meal compositions by age (aged 1-2, 3-5, 6-11, 12-18, 19-64, 65-74 and ≥ 75 years) and gender. The 2020 Food Balance Wheel included the 6th food group of oils and sugars to raise public awareness and avoid confusion in the practical utilization of the model by industries or individuals in reducing the consistent increasing intakes of oils and sugars. To promote the everyday use of the Food Balance Wheel and recommended meal compositions among the general public, the poster of the Food Balance Wheel was created in five languages (Korean, English, Japanese, Vietnamese and Chinese) along with card news. A survey was conducted to provide a basis for categorizing nutritional problems by life cycles and developing customized web-based messages to the public. Based on survey results two types of card news were produced for the general public and youth. Additionally, the educational program was developed through a series of processes, such as prioritization of educational topics, setting educational goals for each stage, creation of a detailed educational system chart and teaching-learning plans for the development of educational materials and media.

Examining the Formation of Entrepreneurial Activities through Cognitive Approach (기업가적 활동 형성에 미치는 영향요인: 인지론적 접근)

  • Lee, Chaewon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.3
    • /
    • pp.65-74
    • /
    • 2017
  • There have been questions how entrepreneurs think, act and why individuals become entrepreneurs. The trait-based explanation of entrepreneurial activities has been main stream. However, the trait-based theory has been criticized because it assumes that entrepreneurial traits are inherited, stable and enduring over time. This research accepts the cognitive theory to see how entrepreneurs learn or accept others' values, how entrepreneurial perceptions of opportunity impact entrepreneurial actions and how individuals acquire the social legitimation of the formation of entrepreneurial activities. In order to capture the attitudes, activities and motivations of people who are involved in entrepreneurial activities, the author uses the GEM Korea 2016 data. The data from the Global Entrepreneurship Monitor(GEM) has been well known for the data to capture individuals early-stage entrepreneurial activities. This paper used the sample from the APS(Adult Population Survey) of the GEM which was completed by a representative sample of two thousand adults in Korea by the qualified survey vendor, with strict procedures and oversight by the GEM central data team. The hypotheses are tested with logit regression analysis to estimate the probability of the influence of perceptual variables such as individual perception in social learning, the opportunity recognition in the environment, and social legitimation in the entrepreneurial activities. Based on the results, individuals tend to have high entrepreneurial activities if individuals have high self-efficacy. Also, the existence of role models around the entrepreneurs encourages the individuals involve in entrepreneurial activities more however the perception of opportunity in the environment is not strongly associated with entrepreneurial activities. The media exposure of successful entrepreneurs is more important than others' perception of entrepreneurs on the desirable career option or respect from communities. This paper can contribute to the cognitive processes, particular perception about oneself, as well as perception which is impacted by a community or a society.

  • PDF

How does the introduction of smart technology change school science inquiry?: Perceptions of elementary school teachers (스마트 기기 도입이 과학탐구 활동을 어떻게 변화시킬 것인가? -교육대학원 초등과학 전공 교사의 인식 사례를 중심으로-)

  • Chang, Jina;Joung, Yong Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.359-370
    • /
    • 2017
  • The purpose of this study is to explore the changes caused by using smart technology in school science inquiry. For this, we investigated 12 elementary school teachers' perceptions by using an open-ended questionnaire, group discussions, classroom discussions, and participant interviews. The results of this study indicate that the introduction of technology into classroom inquiry can open up the various possibilities and can cause additional burdens as well. First, teachers explained that smart technology can expand the opportunities to observe natural phenomena such as constellations and changing phases of the moon. However, some teachers insisted that, sometimes, learning how to use new devices disrupts students' concentration on the inquiry process itself. Second, teachers introduced the way of digital measurement using smart phone sensors in inquiry activities. They said that digital measurement is useful in terms of the reduction of errors and of the simplicity to measure. However, other teachers insisted that using new devices in classroom inquiry can entail additional variables and confuse the students' focus of inquiry. Communication about inquiry process can also be improved by using digital media. However, some teachers emphasized that they always talked about both the purpose of using SNS and online etiquettes with their students before using SNS. Based on these results, we discussed the necessity of additional analysis on the various ways of using digital devices depending on teachers' perceptions, the types of digital competency required in science inquiry using smart technology, and the features of norms shaped in inquiry activities using smart technology.

Recognition and Operation of Home Economics Education in Specialized Middle Schools among Alternative Schools (대안학교 중 특성화 중학교의 가정교과 운영실태 및 인식에 관한 연구)

  • Bae, So-Youn;Shin, Hye-Won
    • Journal of Korean Home Economics Education Association
    • /
    • v.20 no.1
    • /
    • pp.137-152
    • /
    • 2008
  • This study examined the organization and operation of home economics curriculum of specialized middle school in the form of regular school among alternative schools and analyzed the perceptions of teachers and students about home economics class. Interviews were conducted with teachers of 6 specialized schools in order to determine the operations and teachers' perceptions of home economics education. Students' perceptions for home economics class were gathered through surveys with students from the 3 (of the original 6) schools that authorized the questionnaire survey. The final analysis utilized 205 student responses. Survey data were analyzed using the SPSS program. The results of the research were as follows: First, home economics education within specialized middle schools was mostly conducted according to the form of the technology-home economics curriculum, which is the national common basic curriculum. Compared to the 7th national curriculum, the class of technology-home economics curriculum in 4 schools occurred 1 hour less each week. Each school incorporated various specialized curricula related to home economics. Second, as for the operation of home economics education in specialized schools, most home economics classes were conducted by teachers who had majored (or minored) in home economics. Moreover, all but 1 school, which used self-made materials, used the national textbook and dealt with the entire content of the textbook. For teaching-learning methods and instructional media, various means were utilized. For evaluation methods, most schools based grades on paper-and-pencil tests(50-60%) and performance tests(40-50%). Third, among teachers' perceptions of home economics education, the meaning of home economics education was focused on practical help and the pursuit of home happiness; the purpose was to realize the happiness of students and their homes by applying these to actual living, and increase students' ability to see the world. In regards to difficulties in educational operations, most pointed out poor conditions of practice rooms. As for differences from general schools, most teachers mentioned the active communication with students. Fourth, through the home economics class, it was found that students perceived the goal of technology-home economics curricula as lower than average. Among students' perceptions about home economics class, most were negative. Perceptions about goal of technology-home economics curricula and home economics class also showed meaningful differences according to each school. Students of the school, which had more home economics class hours and specialized curricula related to home economics, perceived more positively. Also, students who were more satisfied with school and learned from a teacher who majored in home economics tended to perceive home economics class more positively.

  • PDF

A Methodology for Automatic Multi-Categorization of Single-Categorized Documents (단일 카테고리 문서의 다중 카테고리 자동확장 방법론)

  • Hong, Jin-Sung;Kim, Namgyu;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.77-92
    • /
    • 2014
  • Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we propose a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. First, we attempt to find the relationship between documents and topics by using the result of topic analysis for single-categorized documents. Second, we construct a correspondence table between topics and categories by investigating the relationship between them. Finally, we calculate the matching scores for each document to multiple categories. The results imply that a document can be classified into a certain category if and only if the matching score is higher than the predefined threshold. For example, we can classify a certain document into three categories that have larger matching scores than the predefined threshold. The main contribution of our study is that our methodology can improve the applicability of traditional multi-category classifiers by generating multi-categorized documents from single-categorized documents. Additionally, we propose a module for verifying the accuracy of the proposed methodology. For performance evaluation, we performed intensive experiments with news articles. News articles are clearly categorized based on the theme, whereas the use of vulgar language and slang is smaller than other usual text document. We collected news articles from July 2012 to June 2013. The articles exhibit large variations in terms of the number of types of categories. This is because readers have different levels of interest in each category. Additionally, the result is also attributed to the differences in the frequency of the events in each category. In order to minimize the distortion of the result from the number of articles in different categories, we extracted 3,000 articles equally from each of the eight categories. Therefore, the total number of articles used in our experiments was 24,000. The eight categories were "IT Science," "Economy," "Society," "Life and Culture," "World," "Sports," "Entertainment," and "Politics." By using the news articles that we collected, we calculated the document/category correspondence scores by utilizing topic/category and document/topics correspondence scores. The document/category correspondence score can be said to indicate the degree of correspondence of each document to a certain category. As a result, we could present two additional categories for each of the 23,089 documents. Precision, recall, and F-score were revealed to be 0.605, 0.629, and 0.617 respectively when only the top 1 predicted category was evaluated, whereas they were revealed to be 0.838, 0.290, and 0.431 when the top 1 - 3 predicted categories were considered. It was very interesting to find a large variation between the scores of the eight categories on precision, recall, and F-score.

Construction of Event Networks from Large News Data Using Text Mining Techniques (텍스트 마이닝 기법을 적용한 뉴스 데이터에서의 사건 네트워크 구축)

  • Lee, Minchul;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.183-203
    • /
    • 2018
  • News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.

Subject-Balanced Intelligent Text Summarization Scheme (주제 균형 지능형 텍스트 요약 기법)

  • Yun, Yeoil;Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.141-166
    • /
    • 2019
  • Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.