Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.4
/
pp.82-88
/
2009
Video proxy server which is located near clients can store the frequently requested video data in storage space in order to minimize initial latency and network traffic significantly. However, due to the limited storage space in video proxy server, an appropriate video selection method is needed to store the videos which are frequently requested by users. Thus, we present a virtual caching technique to efficiently store the video in video proxy server. For this purpose, we employ a virtual memory in video poky server. If the video is requested by user, it is loaded in virtual memory first and then, delivered to the user. A video which is loaded in virtual memory is deleted or moved into the storage space of video poxy sewer depending on the request condition. In addition, virtual memory is divided into each segment area in order to store the segments efficiently and to avoid the fragmentation. The simulation results show that the proposed method performs better than other methods in terms of the block hit rate and the number of block deletion.
This paper proposes a method for providing the information about multimedia streams for telepresence services to heterogeneous services such as IMS (IP Multimedia Subsystem) and RTCWeb (Real-Time Communication in WEB-browsers). First of all, we design an interworking gateway for each service and suggest a procedure for providing the information about multimedia streams, which is defined by CLUE, a working group for standardization, to the heterogeneous services. We also apply the method of the actual CLUE information exchange and implement it in our experiment environment. Finally, we show that the proposed method can exchange more information than previous methods even though the media session re-establishment time is similar to legacy systems in terms of performance analysis. With the proposed method, the heterogeneous services can collect a variety of information about the telepresence service and use it according to user preference. In this way it provides rich multimedia streaming services for many areas.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.8
/
pp.4077-4091
/
2017
This paper presents the design of a broadcasting scenario and system for an 8K-resolution content. Due to an 8K content is four times larger than the 4K content in terms of size, many technologies such as content acquisition, video coding, and transmission are required to deal with it. Therefore, high-quality video and audio for 8K (ultra-high definition television) service is not possible to be transmitted only using the current terrestrial broadcasting system. The proposed broadcasting system divides the 8K content into four 4K contents by area, and each area is hierarchically encoded by Scalable High-efficiency Video Coding (SHVC) into three layers: L0, L1, and L2. Every part of the 8K video content divided into areas and hierarchy is independently treated. These parts are transmitted over heterogeneous networks such as digital broadcasting and broadband networks after going through several processes of generating signal messages, encapsulation, and packetization based on MPEG media transport. We propose three methods of generating streams at the sending entity to merge the divided streams into the original content at the receiving entity. First, we design the composition information, which defines the presentation structure for displays. Second, a descriptor for content synchronization is included in the signal message. Finally, we define the rules for generating "packet_id" among the packet header fields and design the transmission scheduler to acquire the divided streams quickly. We implement the 8K broadcasting system by adapting the proposed methods and show that the 8K-resolution contents are stably received and serviced with a low delay.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.2
/
pp.695-712
/
2021
As the use of smart devices is being increased rapidly by the development of internet and IT technology, the contents production and utilization rate are showing higher increase, too. In addition, the type of contents also shows very diverse forms such as education, game, video, UCC, etc. In the meantime, the contents are reproduced in diverse forms by reprocessing the original contents, and they are being serviced through the contents service platform. Therefore, the platform to make the contents reprocessing easy and fast is needed. As the diverse contents distribution channels such as YouTube, SNS, App Service, etc, easier contents distribution platform is needed, and the development of the relevant area is expected. In addition, as the selective consumption of the contents having easy accessibility through diverse smart devices is distinguished, the demand for the platform and service that can identify the contents consumption propensity by individual is being increased. Therefore, in this study, to vitalize the online contents distribution, the contents reproduction and publishing platform, was designed and materialized, which can reproduce and distribute the contents based on the real-time contents editing technology in URL unit and the consumer propensity analysis technology using the data management-based broadcasting contents distribution metadata technology and the edited image contents streaming technology. In addition, in the results of comparing with other platforms through the experiment, the performance superiority of the suggested platform was verified. If the suggested platform is applied to the areas of education, broadcasting, press, etc, the multi-media contents can be reproduced and distributed easily, through which the vitalization of contents-related industry is expected.
As the number of videos uploaded on live streaming platforms rapidly increases, the demand for providing highlight videos is increasing to promote viewer experiences. In this paper, we present novel methods for predicting highlights using chat logs and audio data in videos. The proposed models employ bi-directional LSTMs to understand the contextual flow of a video. We also propose to use the features over various time-intervals to understand the mid-to-long term flows. The proposed Our methods are demonstrated on e-Sports and baseball videos collected from personal broadcasting platforms such as Twitch and Kakao TV. The results show that the information from multiple time-intervals is useful in predicting video highlights.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.1
/
pp.27-32
/
2019
Research that implements the classification process through Deep Learning algorithm, one of the outstanding human abilities, includes a unimodal model, a multi-modal model, and a multi-modal method using music videos. In this study, the results were better by suggesting a system to analyze each song's spectrum into short samples and vote for the results. Among Deep Learning algorithms, CNN showed superior performance in the category of music genre compared to RNN, and improved performance when CNN and RNN were applied together. The system of voting for each CNN result by Deep Learning a short sample of music showed better results than the previous model and the model with Softmax layer added to the model performed best. The need for the explosive growth of digital media and the automatic classification of music genres in numerous streaming services is increasing. Future research will need to reduce the proportion of undifferentiated songs and develop algorithms for the last category classification of undivided songs.
Although e-sports broadcasting market based on VR(Virtual Reality) is growing in these days, technology development for securing market competitiveness is quite inadequate in Korea. Global companies such as SLIVER and Facebook already developed and are trying to commercialize 360 VR broadcasting technology which is able to broadcast e-sports in 4K 30FPS VR video. However, 2D video is too poor to use for 360 VR video in that it brings less immersive experience and dizziness and has low resolution in the scene. this paper, we not only proposed and implemented virtual camera technology which is able to capture in-game space as 360 video with 4K 3D by 60FPS for e-sports VR broadcasting but also verified feasibleness of obtaining stereo 360 video up to 4K/60FPS by conducting experiment after setting up virtual camera in sample games from game engine and commercial games.
In the entertainment industry which has great uncertainty, it is essential to predict public preference first. Thanks to various mass media channels such as cable TV and internet-based streaming services, the reality audition program has been getting big attention every day and it is being used as a new window to new entertainers' debut. This phenomenon means that it is changing from a closed selection process to an open selection process, which delegates selection rights to the public. This is characterized by the popularity of the public being reflected in the selection process. Therefore, this study aims to implement a machine learning model which predicts the winner of , which has recently been popular in South Korea. By doing so, this study is to extend the research method in the cultural industry and to suggest practical implications. We collected the data of winners from the 1st, 2nd, and 3rd seasons of the Produce 101 and implemented the predictive model through the machine learning method with the accumulated data. We tried to develop the best predictive model that can predict winners of by using four machine learning methods such as Random Forest, Decision Tree, Support Vector Machine (SVM), and Neural Network. This study found that the audience voting and the amount of internet news articles on each participant were the main variables for predicting the winner and extended the discussion by analyzing the precision of prediction.
Lee, Dongkyun;Lee, Youngjin;Lee, Bogyeong;Kim, Sujin;Park, Haejin;Bae, Sun Hyoung
Journal of Home Health Care Nursing
/
v.29
no.3
/
pp.278-287
/
2022
Purpose: To analyze Korean nurse-related channels and video titles on YouTube, the world's largest online video sharing and social media platform, to clarify public opinion and image of nurses. We seek utilization strategies and measures through current status analysis. Methods: Data is collected by crawling video information related to Korean nurses, and correlation is analyzed with frequent word analysis and keyword network analysis. Results: Through the YouTube algorithm, 2,273 videos of 'Nurse' were analyzed in order of recent views, relevance, and rating, and 2,912 videos searched for with the keyword 'Nurse + Hospital, COVID-19, Awareness, University, National Examination' were analyzed. Numerous videos were uploaded, and nursing work that was uploaded in the form of a vlog recorded a high number of views. Conclusion: We could see if the YouTube video shows images of nurses. It has been confirmed that various information is being exchanged rather than information just for promotional purposes.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.1348-1351
/
2008
최근 인터넷 사용자들의 요구는 멀티미디어로 집중되고 있으며 그중 라이브 미디어 스트리밍 서비스에 대한 요구가 증가하고 있다. 라이브 서비스에서는 적절한 시간에 사용자에게 데이터가 도착하는 것이 중요하다. 따라서 라이브의 시간적절성을 충족시켜 줄 효율적이고 신속한 데이터 전달구조와 전송기법이 요구된다. 이에 본 논문에서는 트리와 메시 구조를 혼합한 하이브리드 방식으로 네트워크 자원을 효율적으로 사용하면서 빠른 데이터 전송으로 라이브의 시간적절성을 충족시킬 수 있는 데이터 분할 전송 방식의 P2P(Peer-to-Peer) 오버레이 구조를 제안한다. 제안하는 ToG(Tree of Groups)는 n개의 피어들이 메시로 그룹을 형성하고, 그렇게 형성된 그룹들이 트리를 이루는 구조이다. ToG에서 그룹 내의 각 피어들은 상위그룹의 피어 한 개와 부모-자식으로 연결되어 있어서 그룹 사이에 여러 개의 연결이 존재하게 된다. 따라서 그룹 내에서 어느 한 피어가 그룹을 빠져 나가더라도 상위그룹과의 여러 연결에 의해서 서비스 지속성을 보장 할 수 있다. ToG는 그룹단위로 트리가 형성되기 때문에 피어의 개수가 같을 때 피어단위로 트리를 형성하는 구조보다 트리의 깊이가 줄어든다. 그에 따라 말단에 있는 피어들에게까지 빠른 시간에 데이터가 전달 될 수 있다. ToG의 데이터 전달은 소스로부터 세그먼트가 일정한 값 n으로 나뉘어져 각 피어들에게 전달된다. 세그먼트 조각은 소스로부터 나뉘어져 전송 될 때 책임적으로 전달해야할 피어와 전달 순서가 정해져있고, 데이터 전송 스케줄링을 위한 버퍼 맵 교환은 필요하지 않다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.