• Title/Summary/Keyword: Media big data

Search Result 531, Processing Time 0.023 seconds

A Study on Automatic Classification of Newspaper Articles Based on Unsupervised Learning by Departments (비지도학습 기반의 행정부서별 신문기사 자동분류 연구)

  • Kim, Hyun-Jong;Ryu, Seung-Eui;Lee, Chul-Ho;Nam, Kwang Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.345-351
    • /
    • 2020
  • Administrative agencies today are paying keen attention to big data analysis to improve their policy responsiveness. Of all the big data, news articles can be used to understand public opinion regarding policy and policy issues. The amount of news output has increased rapidly because of the emergence of new online media outlets, which calls for the use of automated bots or automatic document classification tools. There are, however, limits to the automatic collection of news articles related to specific agencies or departments based on the existing news article categories and keyword search queries. Thus, this paper proposes a method to process articles using classification glossaries that take into account each agency's different work features. To this end, classification glossaries were developed by extracting the work features of different departments using Word2Vec and topic modeling techniques from news articles related to different agencies. As a result, the automatic classification of newspaper articles for each department yielded approximately 71% accuracy. This study is meaningful in making academic and practical contributions because it presents a method of extracting the work features for each department, and it is an unsupervised learning-based automatic classification method for automatically classifying news articles relevant to each agency.

A Study on the Change of the View of Love using Text Mining and Sentiment Analysis (텍스트 마이닝과 감성 분석을 통한 연애관의 변화 연구 : <공항가는 길>과 <이번 주 아내가 바람을 핍니다>를 중심으로)

  • Kim, Kyung-Ae;Ku, Jin-Hee
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.285-294
    • /
    • 2017
  • In this study, change of the view of love was analyzed by big data analysis in TV drama of married person's love. Two dramas were selected for analysis with opposite theme of love story. The sympathy of audience for the one month period from the end of the drama was analyzed by text mining and sentiment analysis. In particular, changes in the meaning of home meaning are identified. Home is not 'a place where a husband and wife play a social role', but 'a place where they can share real sympathy and one can be happy'. If individuals are not happy, they need to break their homes. In this study, the current divorce rate and the question regarding the matter should be considered. But based on Google Trends, in Korean society, interest in marriage were still higher than romance. It means that people prefer to 'a love to get marriage' in Korean modern society, than 'love for love affair'. It seems to be reflection of cognition change, marriage should be based on true love. This study is expected to be applied to the study of trend change through social media.

ESG Management, Strategies for corporate sustainable growth : KT's company-wide goals and strategies (ESG 경영, 기업의 지속가능성장을 위한 전략 : KT의 전사적 목표와 전략)

  • Kang, Yoon Ji;Kim, Sanghoon
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.233-244
    • /
    • 2022
  • One of the most noteworthy topics in recent corporate management is ESG(Environmental, Social, Governance). Although there are many companies that have declared ESG management, KT has declared full-fledged ESG management in 2021 and is sharing its sustainable management strategy with stakeholders. In addition, KT is strengthening ESG management by issuing ESG bonds for the first time in the domestic ICT industry. At a time when the information technology industry became more important due to COVID-19, this study attempted to examine KT's ESG management goals and strategies by dividing them into environmental, social, and governance areas. KT was aiming to achieve environmental integrity through 'environmental management', 'green competence', 'energy resources', and 'eco-friendly projects' in the environmental field. In addition, in the social field, genuine creating social value was pursued through 'social contribution', 'co-growth', and 'human rights management'. Finally, in the governance area, it was aiming for a transparent corporate management system to pursue economic reliability through 'ethics and compliance' and 'risk management'. In particular, KT was promoting its own ESG management by promoting strategies to solve environmental and social problems using AI and BigData technologies based on the characteristics of a digital platform company. This study aims to derive implications for ESG strategy establishment and ESG management development direction through KT's ESG management case in relation to ESG management, which has emerged as a hot topic.

Analysis of news bigdata on 'Gather Town' using the Bigkinds system

  • Choi, Sui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.53-61
    • /
    • 2022
  • Recent years have drawn a great attention to generation MZ and Metaverse, due to 4th industrial revolution and the development of digital environment that blurs the boundary between reality and virtual reality. Generation MZ approaches the information very differently from the existing generations and uses distinguished communication methods. In terms of learning, they have different motivations, types, skills and build relationships differently. Meanwhile, Metaverse is drawing a great attention as a teaching method that fits traits of gen MZ. Thus, the current research aimed to investigate how to increase the use of Metaverse in Educational Technology. Specifically, this research examined the antecedents of popularity of Gather Town, a platform of Metaverse. Big data of news articles have been collected and analyzed using the Bigkinds system provided by Korea Press Foundation. The analysis revealed, first, a rapid increasing trend of media exposure of Gather Town since July 2021. This suggests a greater utilization of Gather Town in the field of education after the COVID-19 pandemic. Second, Word Association Analysis and Word Cloud Analysis showed high weights on education related words such as 'remote', 'university', and 'freshman', while words like 'Metaverse', 'Metaverse platform', 'Covid19', and 'Avatar' were also emphasized. Third, Network Analysis extracted 'COVID19', 'Avatar', 'University student', 'career', 'YouTube' as keywords. The findings also suggest potential value of Gather Town as an educational tool under COVID19 pandemic. Therefore, this research will contribute to the application and utilization of Gather Town in the field of education.

Effects of Online Engagement on Uses of Digital Paid Contents (온라인 관여가 디지털 유료 콘텐츠 이용에 미치는 영향)

  • Yang, JungAe;Song, Indeok
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.468-481
    • /
    • 2018
  • This study aims to empirically investigate how users' online engagement behaviors predict their uses of paid contents. To this end, the data from the 2016 Korean Media Panel Survey, which has been conducted annually by the Korea Information Society Development Institute(KISDI), were analyzed. Major findings(N=8.313) were as follows. First, the active type of online engagement(e.g., posting, commenting), which contributes to direct creation of online contents, was the most powerful predictor to explain the DV. On the other hand, relatively passive actions of user engagement(e.g., sharing, endorsing, voting) turned out to have no significant effects on the uses of paid contents, just as personality traits and online privacy concerns did. Based on these results, it is recommended that online contents or platform service providers should try to establish clearly-targeted marketing strategies, after thoroughly collecting and analyzing the data of users' various online behaviors.

The 4th Industrial Revolution's Impact on Network Marketing - Focused on ABN Korea Case - (4차 산업혁명 시대 정보통신기술(ICT)이 가져온 네트워크 마케팅의 현재와 미래 - 한국암웨이 사례 연구 -)

  • Park, So-Jin;Oh, Chang-Gyu
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.379-400
    • /
    • 2017
  • Purpose The purpose of this study is to investigate the effects of ICT on multilevel marketing organizations (MLMs) whose members are both salespeople and consumers. This study explores the effects of the latest ICT convergence on the direct selling, which is the oldest sales method, and suggests the direction for the development of network marketing. Therefore, we will propose the changes in direct sales brought by ICT and predict the future direction of network marketing in preparation for the 4th Industrial Revolution era. Design/methodology/approach Exploratory case study was the methodology selected for this paper. The case study enables the use of multiple methods for data collection and analysis. This study applies qualitative case-study methodology on Amway Korea, which is the top seller of MLM organizations, to better understand the impact of ICT. This study conducted an in-depth interview with four different levels of MLM members (e.g. membership, ruby, emerald, diamond) which are based on the qualification system of MLM organizations and observed their behaviors. Findings This study revealed that the ICT impact on network marketing organizations(MLMs) could be summarized as follows : new membership growth, easier communication with customers, increase in work efficiency, increase in organizational trust, change in educational environment, and increase in the use of social media. Based on the interview, we propose the changes of network marketing organizations in the fourth industrial revolution era and the future strategy of Amway Korea as follows: (1) retention of royal ABOs, (2) harmony with SMEs, (3) utilization of Big Data, (4) creation of IoT business model, and (5) construction of successful O2O business platform.

Active Senior Contents Trend Analysis using LDA Topic Modeling (LDA 토픽 모델링을 이용한 액티브 시니어 콘텐츠 트렌드 분석)

  • Lee, Dongwoo;Kim, Yoosin;Shin, Eunjung
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.35-45
    • /
    • 2021
  • The purpose of this study is to understand the characteristics and trends of active senior. As the baby boom generation become the age of the elderly, they are more active than senior. These seniors are called active seniors, a new consumer group. Many countries and companies are also interested in providing relevant policies and services, but there is lack of researches on active senior trends. This study collects the 8,740 posts related to active seniors on social media from January 1st, 2018 to June 31st, 2021, and conducted keyword frequency analysis, TF-IDF analysis and LDA topic modeling. Through LDA topic modeling, topics are classified into 10 categories: lifestyle, benefits, shopping, government business, government education, health, society and economy, care industry, silver housing, leisure. The results of this study can be utilized as fundamental data to help understand the academic and industrial aspects of active senior.

Development of a Model for Winner Prediction in TV Audition Program Using Machine Learning Method: Focusing on Program (머신러닝을 활용한 TV 오디션 프로그램의 우승자 예측 모형 개발: 프로듀스X 101 프로그램을 중심으로)

  • Gwak, Juyoung;Yoon, Hyun Shik
    • Knowledge Management Research
    • /
    • v.20 no.3
    • /
    • pp.155-171
    • /
    • 2019
  • In the entertainment industry which has great uncertainty, it is essential to predict public preference first. Thanks to various mass media channels such as cable TV and internet-based streaming services, the reality audition program has been getting big attention every day and it is being used as a new window to new entertainers' debut. This phenomenon means that it is changing from a closed selection process to an open selection process, which delegates selection rights to the public. This is characterized by the popularity of the public being reflected in the selection process. Therefore, this study aims to implement a machine learning model which predicts the winner of , which has recently been popular in South Korea. By doing so, this study is to extend the research method in the cultural industry and to suggest practical implications. We collected the data of winners from the 1st, 2nd, and 3rd seasons of the Produce 101 and implemented the predictive model through the machine learning method with the accumulated data. We tried to develop the best predictive model that can predict winners of by using four machine learning methods such as Random Forest, Decision Tree, Support Vector Machine (SVM), and Neural Network. This study found that the audience voting and the amount of internet news articles on each participant were the main variables for predicting the winner and extended the discussion by analyzing the precision of prediction.

Requirement Analysis of Korean Public Alert Service using News Data (뉴스 데이터를 활용한 재난문자 요구사항 분석)

  • Lee, Hyunji;Byun, Yoonkwan;Chang, Sekchin;Choi, Seong Jong
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.994-1003
    • /
    • 2020
  • In this paper, we investigated the current issues on the KPAS(Korean Public Alert Service) by News analysis. News articles, from May 15, 2005 to April 30, 2020, were collected with the key word of 'KPAS' through the News Big-Data System provided by the Korea Press Foundation. The results of the content analysis are as follows. First, the issues on alert presentation were categorized by alarm sound, message content, alert level, transmission frequency, delay, reception range, time of alert, and language. Issues on inability to receive KPAS messages were categorized into authority, mobile, sending standard, mobile communication infra, etc. For the last two to three years, news on the inability issues had decreased, while news on the presentation issues had increased. This tells us that the public demand for improvement in the KPAS lies in the presentation issues. The demand for societal resolutions to the presentation issues especially on message content, transmission frequency, and reception range has soared.

A Study on the Construction of a Car Camping Map and Recommendation of Car Camping based on SNS Text Mining Analysis for the Post-Corona Era (SNS 텍스트 마이닝 기반 포스트 코로나 신트렌드 차박 여행 지도 제작 및 차박지 추천에 관한 연구)

  • Kim, Minjeong;Kim, Soohyun;Oh, Jihye;Eom, Jiyoon;Kang, Juyoung
    • Journal of Information Technology Services
    • /
    • v.20 no.5
    • /
    • pp.11-28
    • /
    • 2021
  • As untact travel has become a new trend in leisure culture due to the spread of COVID-19, car camping market is rapidly increasing. The sales of car camping-related goods increased by up to 600 percent, and the sales of SUV in Korea also increased by about four times. Despite the growth of the car camping market, there is a lack of research on the actual condition of the car camping market or research on the user's perspective. Therefore, in this study, a survey of actual camping users was conducted to derive factors that they consider important in camping, and through this, a car camping map was produced. As a result, two types of maps were produced: a map about the car camping site and convenience facilities closest to the car camping site in Gangwon-do, and a hash tag themed map based on keywords for each car camping site. We gathered data on portal sites and social media to obtain information related to camping sites and proceeded with analysis using text mining. In addition, we extracted keywords using network analysis techniques and selected key themes that represent them. This allows the user to choose a car camping site by selecting keywords that suit their taste. We hope that this research will help car camping researchers as a prior study and provide a foundation for leading a clean camping culture through clean camping campaign. Also, we hope that car camping users will be able to do quality trip.