• Title/Summary/Keyword: Media Transport

Search Result 502, Processing Time 0.027 seconds

Design of 8K Broadcasting System based on MMT over Heterogeneous Networks

  • Sohn, Yejin;Cho, Minju;Paik, Jongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4077-4091
    • /
    • 2017
  • This paper presents the design of a broadcasting scenario and system for an 8K-resolution content. Due to an 8K content is four times larger than the 4K content in terms of size, many technologies such as content acquisition, video coding, and transmission are required to deal with it. Therefore, high-quality video and audio for 8K (ultra-high definition television) service is not possible to be transmitted only using the current terrestrial broadcasting system. The proposed broadcasting system divides the 8K content into four 4K contents by area, and each area is hierarchically encoded by Scalable High-efficiency Video Coding (SHVC) into three layers: L0, L1, and L2. Every part of the 8K video content divided into areas and hierarchy is independently treated. These parts are transmitted over heterogeneous networks such as digital broadcasting and broadband networks after going through several processes of generating signal messages, encapsulation, and packetization based on MPEG media transport. We propose three methods of generating streams at the sending entity to merge the divided streams into the original content at the receiving entity. First, we design the composition information, which defines the presentation structure for displays. Second, a descriptor for content synchronization is included in the signal message. Finally, we define the rules for generating "packet_id" among the packet header fields and design the transmission scheduler to acquire the divided streams quickly. We implement the 8K broadcasting system by adapting the proposed methods and show that the 8K-resolution contents are stably received and serviced with a low delay.

An Efficient 4K and 8K UHD Transmission Scheme on Convergence Networks with Broadcasting and LTE by using Coordinated Multi-Point Transmission System

  • Ryu, Youngsu;Park, Kyungwon;Wee, Jungwook;Kwon, Kiwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4092-4104
    • /
    • 2017
  • In this paper, an efficient 4K and 8K UHD(Ultra High Definition) transmission scheme is proposed on the convergence networks with broadcasting and LTE(Long Term Evolution) by using CoMP(Coordinated Multi-Point). A video data is compressed and divided into BL(Base Layer), E(Enhanced layer)1, E2 and E3 by scalable HEVC(High Efficiency Video Coding). The divided layers can be combined by the scalable HEVC such as mobile HD, full HD, 4K and 8K UHD(Ultra High Definition). The divided layers are transmitted through the convergence networks with DVB-T2(Digital Video Broadcasting-$2^{nd}$ Generation Terrestrial) broadcasting system and LTE CoMP. This scheme transmits mobile HD and full HD layers through DVB-T2 broadcasting system by using M-PLP(Multiple-physical Layer Pipes), and adaptively transmits 4K or 8K UHD layer through LTE CoMP with MMT(MPEG Media Transport) server. An adaptive transmitting and receiving scheme in the LTE CoMP system provides 4K or 8K UHD layer to a user according to the user status. The proposed scheme is verified by showing the system-level simulation results which is better BER(bit-error-rate) performance than the conventional scheme. The results show that the proposed scheme provides the stable video contents to the user especially at the cell edge.

Mobility of silver nanoparticles (AgNPs) and oxidative degradation of endocrine disrupting chemicals by saturated column experiments (포화컬럼실험에서 산화공정을 적용한 내분비계 장애물질의 제거 및 은나노물질의 거동 연구)

  • Kim, Yejin;Heo, Jiyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • We applied column experiments to investigate the environmental fate and transport of silver nanoparticles(AgNPs) in fully saturated conditions of porous media. These column experiments were performed to emphasize oxidation method with $H_2O_2$ concentration and acidic conditions. The mobility of AgNPs was decreased with the increasing ionic strength that the surface charge of AgNPs(zeta potential) was neutralized with the presence of positive ions of $Na^+$. Additionally, it was also affected due to that not only more increased aggregated size of AgNPs and surface charge of quartz sand. The decreased breakthrough curves(BTCs) of bisphenol-A(BPA) and $17{\alpha}$-ethynylestradiol(EE2) were removed approximately 35.3 and 40%. This is due to that endocrine disrupting chemicals(EDCs) were removed with the release of $OH{\cdot}$ radicals by the fenton-like mechanisms from acidic and fenton-like reagent presenting. This results considered that higher input AgNPs with acidic conditions is proved to realistic in-situ oxidation method. Overall, it should be emphasized that a set of column experiments employed with adjusting pH and $H_2O_2$ concentration in proved to be effective method having potential ability of in-situ degradation for removing organic contaminants such as BPA and EE2.

Design and Implementation of Smart Home Remote Control Based on Internet of Things Service Platform (사물인터넷 서비스 플랫폼 기반 스마트 홈 리모컨의 설계 및 구현)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1563-1570
    • /
    • 2018
  • Internet of Things technology is rapidly becoming a reality in many parts of our lives through various product services, and product development especially in the field of smart home is being actively carried out. Most controllers for controlling various smart home products use smart phone applications. However, smart phone applications are not suitable as smart home controllers, contrary to smart home services that emphasize intelligence and convenience. In order to provide intelligent smart home service, intuitive form of smart home controller is needed, which enables integrated control of smart home device. Therefore, this paper proposes a smart home remote control that can control the Internet devices and services of objects. The proposed smart home remote control provides an environment where users can build a smart home service through the IFTTT(If This Then That) automated service platform.

Identification of Toxic Chemicals Using Polypyrrole-Cyclodextrin Hybrids (폴리피롤-사이클로덱스트린 혼성체를 이용한 유해화합물질의 검출)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.186-189
    • /
    • 2019
  • Polypyrrole is a typical electrical conducting polymer, which has an excellent charge transport property. Cyclodextrins are a group of toxic-free and cyclic oligosaccharide molecules, capable of capturing low molecular weight chemicals. Considering these advantages, hybrid materials of polypyrrole and cyclodextrin can be used to detect hazardous compounds. Cyclodextrin molecules can accommodate toxic chemicals by the formation of host-guest complexes and generate electric signals, which are effectively delivered by polypyrrole backbone. In this study, the polypyrrole/cyclodextrin hybrid material was prepared using a facile wet method and included into a hydrogel. Subsequently, it was applied to a simple sensor system with a gold-patterned electrode for the detection of potentially hazardous material, methyl paraben. Compared with pristine polypyrrole, it was found that the polypyrrole/cyclodextrin hybrid showed an improved performance. This study can be an example of using environmentally benign conducting polymer/cyclodextrin hybrids as sensing media.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution

  • Lee, Jong-Ho;Ahn, Hong-Joo;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.900-909
    • /
    • 2018
  • A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.

A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater (생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구)

  • KIM, SANG KYU;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.506-513
    • /
    • 2021
  • The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.

Prophylactic role of Korean Red Ginseng in astrocytic mitochondrial biogenesis through HIF-1α

  • Park, Jinhong;Lee, Minjae;Kim, Minsu;Moon, Sunhong;Kim, Seunghee;Kim, Sueun;Koh, Seong-Ho;Kim, Young-Myeong;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.408-417
    • /
    • 2022
  • Background: Korean Red Ginseng extract (KRGE) has been used as a health supplement and herbal medicine. Astrocytes are one of the key cells in the central nervous system (CNS) and have bioenergetic potential as they stimulate mitochondrial biogenesis. They play a critical role in connecting the brain vasculature and nerves in the CNS. Methods: Brain samples from KRGE-administered mice were tested using immunohistochemistry. Treatment of human brain astrocytes with KRGE was subjected to assays such as proliferation, cytotoxicity, Mitotracker, ATP production, and O2 consumption rate as well as western blotting to demonstrate the expression of proteins related to mitochondria functions. The expression of hypoxia-inducible factor-1α (HIF-1α) was diminished utilizing siRNA transfection. Results: Brain samples from KRGE-administered mice harbored an increased number of GFAP-expressing astrocytes. KRGE triggered the proliferation of astrocytes in vitro. Enhanced mitochondrial biogenesis induced by KRGE was detected using Mitotracker staining, ATP production, and O2 consumption rate assays. The expression of proteins related to mitochondrial electron transport was increased in KRGE-treated astrocytes. These effects were blocked by HIF-1α knockdown. The factors secreted from KRGE-treated astrocytes were determined, revealing the expression of various cytokines and growth factors, especially those related to angiogenesis and neurogenesis. KRGE-treated astrocyte conditioned media enhanced the differentiation of adult neural stem cells into mature neurons, increasing the migration of endothelial cells, and these effects were reduced in the background of HIF-1α knockdown. Conclusion: Our findings suggest that KRGE exhibits prophylactic potential by stimulating astrocyte mitochondrial biogenesis through HIF-1α, resulting in improved neurovascular function.

Prospects For The Development Of Distance Educational Learning Technologies During The Training Of Students Of Higher Education

  • Rohach, Oksana;Pryhalinska, Tetiana;Kvasnytsya, Iryna;Pohorielov, Mykhailo;Rudnichenko, Mykola;Lastochkina, Olena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.353-357
    • /
    • 2022
  • This article identifies the problems and substantiates the directions for the development of distance learning technologies in the training of personnel. An example of using digital media to create a remote access laboratory is given. The article is devoted to the definition of the main aspects of the organization of distance education. Rapid digitization, economic, political and social changes taking place in Ukraine necessitate the reform of the education system. First of all, it concerns meeting the educational needs of citizens throughout their lives, providing access to educational and professional training for all who have the necessary abilities and adequate training. The most effective solution to the above-mentioned problems is facilitated by distance learning. The article analyzes the essence and methods of distance learning organization, reveals the features of the use of electronic platforms for the organization of this form of education in different countries of the world. The positive characteristics of distance learning are identified, namely: extraterritoriality; savings on transport costs; the interest of modern youth in the use of information tools in everyday life; increase in the number of students; simplicity and accessibility of training; convenient consultation system; democratic relations between the student and the teacher; convenience for organizations in training their employees without interrupting their regular work; low level of payment for distance education compared to traditional education; individual learning pace; new teacher status. Among the negative features of online education, the author refers to the following problems: authentication of users during knowledge verification, calculation of the teacher's methodological load and copyright of educational materials; the high labor intensity of developing high-quality educational content and the high cost of distance learning equipment; the need to provide users with a personal computer and access to the Internet; the need to find and use effective motivation mechanisms for education seekers.