• Title/Summary/Keyword: Media Displacement

Search Result 101, Processing Time 0.026 seconds

Reactivity of Superoxide Ion with Halogenonitriles and Dihalocarbons in Aprotic Media

  • 전승원;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1060-1064
    • /
    • 1995
  • The reactivity of superoxide ion (O2-.) with halogenated substrates is investigated by cyclic voltammetry and rotated ring-disk electrode method in aprotic solvents. The more positive the reduction potential of the substituted nitrile, the more facile is nucleophilic displacement by O2-.. The reaction rates of halogenonitriles with O2-. vary according to the leaving-group propensity of halide (Br > Cl > F). The relative reaction rates of other substituted nitriles are in the order of electron-withdrawing propensity of the substituent group (CN > C(O)NH2 > Ph ≒ CH2CN). The reaction of O2-. with dihalocarbons indicates that five-membered rings can be rapidly formed by the cyclization of substrate and O2-., and the relative rates of cyclization depend on the number of methylenic carbons {Br(CH2)nBr, [n=1 < 2 < 3 > 4 > 5]}. Mechanisms are proposed for the reaction of O2-. with halogenated substrates.

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media

  • Parveen, Lata;Himanshi, Himanshi
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.395-403
    • /
    • 2022
  • The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.

Time harmonic interactions due to inclined load in an orthotropic thermoelastic rotating media with fractional order heat transfer and two-temperature

  • Lata, Parveen;Himanshi, Himanshi
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.297-313
    • /
    • 2022
  • The objective of this paper is to study the effect of frequency in a two-dimensional orthotropic thermoelastic rotating solid with fractional order heat transfer in generalized thermoelasticity with two-temperature due to inclined load. As an application the bounding surface is subjected to uniformly and linearly distributed loads (mechanical and thermal source). The problem is solved with the help of Fourier transform. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components, conductive temperature and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The results are depicted graphically to show the effect of frequency on various components. Some particular cases are also discussed in the present research.

Thermomechanical interactions in a transversely isotropic thermoelastic media with diffusion due to inclined load

  • Parveen Lata;Heena
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.263-272
    • /
    • 2024
  • This research deals with the study of two-dimensional deformation in transversely isotropic thermoelastic diffusion medium. This investigation integrates the effect of diffusion and thermal effects in transversely isotropic thermoelastic solids under inclined load. Inclined load is taken as linear combination of normal load and tangential load. Laplace and Fourier transformation techniques are employed to transform the physical domain and then transformed solutions are inverted with the aid of numerical inversion techniques. Concentrated and distributed load are considered to exemplify its utility. Graphical representation of variation in displacement, stresses, temperature and concentration distribution with distance is depicted by taking inclination at different angles. Some particular cases are studied.

A Study on Vibration Detection Method of Disc by Differential Amplifying Optical Power in Optical Disc Media (광 디스크 장치에서 광량 차동증폭에 의한 디스크 진동 검출 방안에 관한 연구)

  • 김진선;곽경섭
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.215-221
    • /
    • 2002
  • In high speed optical disc devices, the vibration caused by unbalanced displacement leads the focus and tracking servo systems to be unstable, and increases the data search time. In this paper, we propose a new scheme to solve the unbalanced displacement problem. The proposed method detects the unbalanced rate by differential amplifying optical power received at photo diode and converts it into an electrical signal. controlling the speed of spindle motor, according to the detected unbalanced rate, makes it possible to improve the performance of tracking and data searching tasks. Also, we analyze the dynamic characteristics of focus and tracking servo systems in high speed mode and provide the firmware and hardware architecture that the proposed method can be installed as an add-on- module in the existing system.

  • PDF

An Semiotic analysis on Spirited Away (애니메이션(센과 치히로의 행방불명)에 대한 기호학적분석)

  • Lee Yun-Hui
    • Broadcasting and Media Magazine
    • /
    • v.10 no.1
    • /
    • pp.99-112
    • /
    • 2005
  • Christian Metz, the precursor of cine-semiology, considered cinema as a language in the sense that it is a set of messages grounded in a given matter of expression, and a signifying practice characterized by specific codifications. According to Metz, film forms a structured network produced by the interweaving of cinematic codes, within which cinematic subcodes represent specific usages of the particular code. For Metz, cinematic language is a totality of cinematic codes and subcodes, and history of the cinema is the trace of the competition, incorporations and exclusions of the subcodes. He also suggested a filmic text is not just a list of codes in effect, but a process of constant displacement and deformation of codes. Following Metz' textual analysis methodology, I investigated the formal configuration of Hayao Miyazaki‘s animation, Spirited Away. It is interesting to trace the interweaving of cinematic codes in Spirited Away, i.e. codes of lighting, color, movement, and auteurism, across the animation. I focused on the first scene at the bridge to Yubaba's bathhouse, analyzing each cinematic code and its subcode applied. The first bridge scene is carefully constructed to stand out the confrontation of Chihiro (with Haku) and the bathhouse. The bathhouse is not just a building, it represents the powerful witch, Yubaba, yet to appear on the scene, and functions as an antipode to Chihiro. In each shot, every subcode within the codes of framing, direction, angle, color, lighting and movement is used to maximize the contrast between the dominant bathhouse and the feeble 10-year-old girl. In Spirited Away, the subcodes within each cinematic ode are constantly competing and displacing each other to augment the antithesis between the characters and develop the narrative. As Metz's argument that film constitutes a quasi-linguistic practice as a pluricodic medium, Spirited Away communicates with the spectators with the combination and displacement of these cinematic codes and subcodes.

Mutual Gaze Correction for Videoconferencing using View Morphing (모핑을 이용한 화상회의의 시선 맞춤 보정 방법)

  • Baek, Eu-Tteum;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • Nonverbal communications such as eye gazing, posture, and gestures send forceful messages. In regard to nonverbal communication, eye gazing is one of the most strong forms that an individual can use. However, lack of mutual gazing occurs when we use video conferencing system. The displacement between locations of the eyes and a camera gets in the way of eye contact. The lack of eye gazing can give unapproachable and unpleasant feeling. In this paper, we propose an eye gazing correction for video conferencing. We use two cameras installed at the top and the bottom of the television. The captured two images are rendered with 2D warping at virtual position. We implement view morphing to the detected face, and synthesize the face and the warped image. The result shows that eye gazing is corrected and correctly preserved and the image was synthesized seamlessly.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

DNAPL Removal Mechanisms and Mass Transfer Characteristics during Cosolvent-Air Flooding

  • Jeong, Seung-Woo;A. Lynn Wood;Lee, Tony R.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.163-166
    • /
    • 2002
  • The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass transfer rate coefficients during CA flooding. DNAPL removal mechanisms were examined by evaluating the effects of air flow rate and DNAPL solubility and visually documented at a pore-scale. Two serial processes, immiscible displacement and dissolution, were experimentally and visually documented during CA flooding. Mass transfer rate coefficients (K) were computed from the data showing PCE saturation versus time. Results showed that CA floods exhibited higher K values than cosolvent floods without concurrent air injection. (This document has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.)

  • PDF

On Propagation of Love waves in dry sandy medium sandwiched between fiber-reinforced layer and prestressed porous half-space

  • Gupta, Shishir;Ahmed, Mostaid
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.619-628
    • /
    • 2017
  • The intent of this paper is to investigate the propagation of Love waves in a dry sandy medium sandwiched between fiber-reinforced layer and prestressed porous half-space. Separate displacement components have been deduced in order to characterize the dynamics of individual materials. Using suitable boundary conditions, the frequency equation has been derived by means of separation of variables which reveals the significant role of reinforcement parameters, sandiness, thickness of layers, porosity and prestress on the wave propagation. The phase velocity of the Love wave has been discussed in accordance with its typical cases. In both cases when fiber-reinforced and dry sandy media are absent, the derived equation of Love type wave coincides with the classical Love wave equation. Numerical computations have been performed in order to graphically illustrate the dependencies of different parameters on phase velocity of Love waves. It is observed that the phase velocity decreases with the increase of parameters pertaining to reinforcement and prestress. The results have certain potential applications in earthquake seismology and civil engineering.