• Title/Summary/Keyword: Mechatronics Education

Search Result 280, Processing Time 0.03 seconds

A Study on Evaluation of e-Learning Education Utilization in Practical Course (실습교과목의 이러닝 교육활용 평가에 관한 연구)

  • Kim, Jin-woo;Joo, Kangwo;Jo, Eunjeong
    • Journal of Practical Engineering Education
    • /
    • v.10 no.1
    • /
    • pp.25-33
    • /
    • 2018
  • As the IT industry develops, The field of e-learning based on existing theoretical subjects has expanded to fields requiring actual education. Courses that require practical training in e-learning must be evaluated to have learning outcomes through on-line practice. In this research, a student at Cyber University mechatronics engineering studies 'PLC Control' and 'Servo Motor Control', which are subjects of the undergraduate major, through 'Prime College's CyberLAB' for learning by e-learning investigated whether there was a learning result. For this reason, CyberLAB was conducted. And for the students who took the course for two years, We confirmed through the 5 - point scale questionnaire and grades that the practical subjects had a significant effect on e - learning.

A Study on Experimental Education in Mechanical Engineering (기계공학 분야 실험교육 현황과 향상방안)

  • Won, Yun-Jae
    • Journal of Engineering Education Research
    • /
    • v.14 no.4
    • /
    • pp.83-87
    • /
    • 2011
  • In this paper, the present state of the experiments in the mechanical engineering education is analyzed and the improving methods of the experimental education are presented. Data at twelve universities are collected. In spite of the general understanding of the importance of the experiments, the portion of the experiments is less than 10%. It shows the need to increase the experiments. Experiments for basic mechanics are fairly well performed, but experiments for applied subjects would be strengthened. Several improving methods such as systematic support for experiments, use of the exclusive assistants for experiments, and so on are discussed.

Development of Multiple Wireless Communication Controller for Smart Factory Construction (스마트팩토리 구축을 위한 다중 무선통신 컨트롤러 개발)

  • Oh, Jae-Jun;Choi, Seong-Ju;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.602-608
    • /
    • 2017
  • Due to recent industry 4.0, manufacturing has changed a lot. In particular, it is necessary to control the controller and controller of the control system, to communicate various production information and measurement information, and to produce a database in accordance with the flexible production for a small quantity of various items, and to manage the trend of major parts of production facilities. In this paper, we developed a multiple wireless communication controller for small scale control system for smart factory by applying XBee and microcomputer. This controller is cheap and easy to build multi-radio communication environment of 1: N and can control and monitor control system. In addition, we tested multiple wireless communication controllers by using signal processing device and C++, and constructed network, control, and database for mechanism module, and confirmed effectiveness for industrial application.

Experimental Analysis and Optimization of Experimental Analysis and Optimization of $CF_4/O_2$ Plasma Etching Process Plasma Etching Process (실험계획법에 의한 $CF_4/O_2$ 플라즈마 에칭공정의 최적화에 관한 연구)

  • Choi, Man-Sung;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • This investigation is applied Taguchi method and the analysis of variance(ANOVA) to the reactive ion etching(RIE) characteristics of $SiO_2$ film coated on a wafer with Experimental Analysis and Optimization of $CF_4/O_2$ Plasma Etching Process mixture. Plans of experiments via nine experimental runs are based on the orthogonal arrays. A $L_9$ orthogonal array was selected with factors and three levels. The three factors included etching time, RF power, gas mixture ratio. The etching rate of the film were measured as a function of those factors. In this study, the etching thickness mean and uniformity of thickness of the RIE are adopted as the quality targets of the RIE etching process. The partial factorial design of the Taguchi method provides an economical and systematic method for determining the applicable process parameters. The RIE are found to be the most significant factors in both the thickness mean and the uniformity of thickness for a RIE etching process.

  • PDF

Characteristics Analysis of Flex Link according to Mold Clamping Force in Injection Molding Machine (형체력에 따른 사출성형기 플렉스링크의 특성 분석)

  • Jung, Hyun Suk;Yoo, Joong Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • Reproducibility of injection molding machines are studied at the study of this time. We applied computer aided engineering program so it could generate clamping force, about 1,500 kN, to the nozzle center part of flex link in tie-bar and at this time, we made sure condition of stress distribution and transformation quantity in flex link. The result of computer aided engineering transformation quantity was confirmed that transformation of top area was 247~257 kN and bottom areas was 273~279 kN and also was confirmed that the stresses are distributed in a range of 57~750 $N/mm^2$ from top to the bottom of the surface. This time we could confirm the condition of transformation quantity and stress distribution by enforcing the previously used structure analysis of flex link. And we utilized the reference data to establish important point of section for non destructive test overhaul.

A Numerical Analysis Using CFD for Effective Process at CMP Equipment (CFD를 이용한 CMP장비의 효과적인 공정을 위한 수치해석적 연구)

  • Lee, Sue-Yeon;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.139-144
    • /
    • 2011
  • CMP process is an essential element in the semiconductor product processes in Chemical Mechanical Polishing. Taken as a whole, CMP is one process, but concretely, it is a detail process which consists of polishing, cleaning, and so on. Especially, the polishing and cleaning are key points in the whole process. Polishing rate is the most important factor and is related with deposition of slurry in the polishing process. Each outlet velocities is the most important factors in cleaning process. And when the velocities are more uniform, the cleaning becomes more effective. In this research, based on these factors, we performed a numerical analysis for effective polishing and cleaning which can be applied to industrial field. Consequently, we figured out that more than one opened nozzle is more effective than one opened nozzle at the polishing pad in case of this research. And we confirmed that the revised models have the uniform velocity distribution more than the previous model of the cleaning nozzle.

A Study on Prediction Model Performance of Scaffold Pore Size Using Machine Learning Regression Method (머신 러닝 회귀 방안을 이용한 인공지지체 기공 크기 예측모델 성능에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • In this paper, We need to change all print factors when which print scaffold with 400 ㎛ pore using FDM 3d printer. Therefore the print quantity is 10 billion times, So we are difficult to print on workplace. To solve the problem, we used the prediction model based machine learning regression. We preprocessed and learned the securing print condition data, and we produced different kinds of prediction models. We predicted the pore size of scaffolds not securing with new print condition data using prediction models. We have derived the print conditions that satisfy the pore size of 400 ㎛ among the predicted print conditions of pore size. We printed the scaffolds 5 times on the condition. We measured the pore size of the printed scaffold and compared the average pore size with the predicted pore size. We confirmed that error was less than 1%, and we were identify the model with the highest pore size prediction performance of scaffold.

An Analysis of the Polymer Melt Flow in Extruder Dies (고분자압출 다이스의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • Extrusion is one of the most important operations in the polymer-processing industry. Balancing the distribution of flow through a die to achieve a uniform velocity distribution is the primary objective and one of the most difficult tasks of extrusion die design. If the manifold in a coat-hanger die is not properly designed, the exit velocity distribution may be not uniform; this can affect the thickness across the width of the die. Yet, no procedure is known to optimize the coat hanger die with respect to an even velocity profile at the exit. While optimizing the exit velocity distribution, the constraint optimization used in this work with allowable pressure drop in the die; according to this constraint we can control the pressure in the die. The computational approach incorporates three-dimensional finite element simulations software STAR-CCM+. These simulations are used with numerical optimization to design polymer coat hanger dies with pressure drop, uniform velocity and temperature variation across the die exit.

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.