• Title/Summary/Keyword: Mechatronic system

Search Result 154, Processing Time 0.026 seconds

A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement (PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구)

  • Choi, Inchan;Lee, Keeman;Juddoo, Mrinal;Masri, A.R.
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

Research on Real-Time Portable Quality Evaluation System for Raw Milk

  • Lee, Dae Hyun;Kim, Yong Joo;Min, Kyu Ho;Choi, Chang Hyun
    • Agribusiness and Information Management
    • /
    • v.6 no.2
    • /
    • pp.32-39
    • /
    • 2014
  • The goal of this research was to develop a portable system that could be used to evaluate the quality of milk in real time at a raw milk production site. A real-time portable quality evaluation system for raw milk was developed to enable non-destructive quality evaluation of somatic cell count (SCC), fat, protein, lactose, and total solid (TS) in milk samples. A prediction model of SCC, fat, protein, lactose, and TS was constructed using partial least squares (PLS) and 200 milk samples were used to evaluate the prediction performance of the portable quality evaluation system and high performance spectroscopy. Through prediction model development and verification, it was found that the accuracy of high performance spectroscopy was 90% for SSC, 96% for fat, 96% for protein, 91% for lactose, and 97% for TS. In comparison, the accuracy of the portable quality evaluation system was relatively low, at 90% for SSC, 95% for fat, 92% for protein, 89% for lactose, 92% for TS. However, the measurement time for high performance spectroscopy was 10 minutes for 1 sample, while for the portable quality evaluation system it was 6 minutes. This means that the high performance spectroscopy system can measure 48 samples per day (8 hours), while the portable quality evaluation system can measure 80 (8 hours). Therefore, it was found that the portable quality evaluation system enables quick on-site quality evaluation of milk samples.

Development of Multi-functional Tele-operative Modular Robotic System For Watermelon Cultivation in Greenhouse

  • H. Hwang;Kim, C. S.;Park, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.517-524
    • /
    • 2003
  • There have been worldwide research and development efforts to automate various processes of bio-production and those efforts will be expanded with priority given to tasks which require high intensive labor or produce high value-added product and tasks under hostile environment. In the field of bio-production capabilities of the versatility and robustness of automated system have been major bottlenecks along with economical efficiency. This paper introduces a new concept of automation based on tole-operation, which can provide solutions to overcome inherent difficulties in automating bio-production processes. Operator(farmer), computer, and automatic machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. Among processes of greenhouse watermelon cultivation tasks such as pruning, watering, pesticide application, and harvest with loading were chosen based on the required labor intensiveness and functional similarities to realize the proposed concept. The developed system was composed of 5 major hardware modules such as wireless remote monitoring and task control module, wireless remote image acquisition and data transmission module, gantry system equipped with 4 d.o.f. Cartesian type robotic manipulator, exchangeable modular type end-effectors, and guided watermelon loading and storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. The proposed system showed practical and feasible way of automation in the field of volatile bio-production process.

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

MEASUREMENT OF FIELD PERFORMANCE FOR TRACTOR

  • M. J. NahmGung;Park, C. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.819-826
    • /
    • 2000
  • This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.

  • PDF

A Study on Prediction of Maximum Steering Torque of Tractor on Off-road (Off-road에서 트랙터의 최대 조타력 예측에 관한 연구)

  • Kim S.Y.;Lee K.S.;Lee S.S.;Lee S.B.;Lee J.W.;Park W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.81-87
    • /
    • 2006
  • In this study, a mathematical model was suggested to predict the maximum steering torque of a tractor on off-road. The model took into account the characteristics of soil, including the pressure-sinkage and the shearing characteristics as well as the primary design parameters of steering system of the tractor. The efficiency of the developed model was verified via comparison of the maximum steering torque predicted using the model with those measured from steering torque test. The results showed that the predicted maximum steering torques were in good agreement with the measured ones from the steering test on soft soil in which tractor is generally operated. Thus, we concluded that the model developed in this study could be used for prediction of maximum steering torque of a tractor.

Development of Prototype Automatic Grafting System for Fruit-bearing Vegetables (박과 채소용 자동접목 시작기 개발)

  • H. Hwang;Kim, S.C.;K.D. Ko
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.217-224
    • /
    • 1999
  • 우리나라의 경우 각종 장해와 주년 수요의 증가에 따른 불시재배의 증가로 인하여 저온신장성, 병해저항성 등과 같이 작물의 내성증진을 목적으로 접목묘의 이용이 급속도로 신장되고 있다. 특시 연작장해가 심한 박과형 채소류는 대부분 접목재배가 필요한 실정이다. 그러나 국내의 경우, 접목작업은 거의 수작업으로 행해지며 세밀한 조작과 숙련성 그리고 많은 노력을 필요로 한다. 따라서, 접목 생산성을 높일 수 있는 저가의 자동화 시스템 개발이 요구된다. 다양한 접목법들 중 현재 농가에서 가장 광범위하게 이용되고 있는 호접은 삽접 및 절단접에 비하여 자동화가 어렵고 활착 후 절단작업이 부가적으로 필요하나 접목 후 순화공정이 간단하고 활착률이 높다. 본 논문에서는 호접과 삽접에 대하여 접목 후의 활착률 및 접목에 소요되는 작업시간을 비교하였고, 호접법에 의거하여 작업공정을 생력화한 육묘 자동접목 시작기를 개발하였다. 시작기는 농가조합 및 중규모 육묘장의 설비를 지향하여, 묘판 및 접목묘의 취급을 제외하고 1인 접목작업 형태의 자동화 시스템으로 개발하였다. 시작기는 크게 버퍼기능을 부착한 배치형 육묘장치부, 2세트에 공압 매니퓰레이터, 대목과 접수의 원할한 접목을 위해 설계한 특수 그리퍼, 각고 조절형 절단부, 진동형 클립공급부 그리고 자동 클립 장착장치로 구성하였다. 접목 작업시간은 대략 4ch 정도이나 작업시간의 조정이 가능하도록 하였다. 실험실에서 수행한 간이접목 시험 결과, 절단날이 대목과 접수의 접촉부위를 관통할 때 접촉면이 서로 어긋나는 경우가 발생하였으나 육묘들이 호접에 적정한 기하학적 물성 요건을 갖춘다면 80% 이상의 접목 육묘의 기하학적 물성에 따른 체계적인 접목시험이 필요하다.

  • PDF

The End-effector of a Cucumber Robot (오이 로봇 수확기의 엔드이펙터)

  • 민병로;이대원
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.281-286
    • /
    • 2004
  • The end-effector is the one of the important factors on development of the cucumber robot to harvester a cucumber. Three end-effectors were designed the single blade end-effector with one blade, the double blade end-effector with two blades and the triple blade end-effector with three blades. Performance tests of the end-effector, the fully integrated system, were conducted to determine the cutting rate by using two different kinds of cucumber. The success rates of cucumber cutting ratio of single end-effector, double end-effector and triple end-effector in laboratory. were 61.7%, 95%, 86.7%, respectively. The cutting rate of single blade or double blade was a little difference with respect to the different diameters of cucumber stem. However, the success cutting rate of the end-effector with triple blade was 61.7% under 29mm diameter of a grabbing stem section. The triple end-effector was not suitable for harvesting a cucumber, but was considered to be suitable for harvesting a grape, an apple and a tomato. The success rate of cucumber cutting ratio of triple end-effectors in greenhouse was 84%. The failure cutting rate was 16% which are due to abnormal shape of cucumber fruit.

Basic Design for Development of IMV for MCV (MCV용 IMV개발을 위한 기초설계)

  • Huh, Junyoung;Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.49-56
    • /
    • 2018
  • Construction machinery is used to improve productivity in civil engineering work and construction work, and it is a lengthy operation, and consumes considerable fuel to cope with large loads. As a result, productivity and fuel consumption of the construction machine become the main deciding factors. In the hydraulic system of the excavator, the main control valve is the most critical position for control. The flow distribution for control performance is achieved by the metering orifice, that causes critical energy loss. To improve this, we propose a combination of a three port proportional pressure reducing valve and a poppet type flow control valve as an IMV to replace the existing spool type MCV. To validate the proposal, we analyze static characteristics by modeling mathematically, and analyze dynamic characteristics. Simulation using the AMESim software on the regeneration circuit of the boom cylinder up-down operation, verifies the energy-saving effect compared to the existing MCV when IMV is used.

A split spectrum processing of noise-contaminated wave signals for damage identification

  • Miao, X.T.;Ye, Lin;Li, F.C.;Sun, X.W.;Peng, H.K.;Lu, Ye;Meng, Guang
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.253-269
    • /
    • 2012
  • A split spectrum processing (SSP) method is proposed to accurately determine the time-of-flight (ToF) of damage-scattered waves by comparing the instantaneous amplitude variation degree (IAVD) of a wave signal captured from a damage case with that from the benchmark. The fundamental symmetrical ($S_0$) mode in aluminum plates without and with a notch is assessed. The efficiency of the proposed SSP method and Hilbert transform in determining the ToF of damage-scattered $S_0$ mode is evaluated for damage identification when the wave signals are severely contaminated by noise. Broadband noise can overwhelm damage-scattered wave signals in the time domain, and the Hilbert transform is only competent for determining the ToF of damage-scattered $S_0$ mode in a noise-free condition. However, the calibrated IAVD of the captured wave signal is minimally affected by noise, and the proposed SSP method is capable of determining the ToF of damage-scattered $S_0$ mode accurately even though the captured wave signal is severely contaminated by broadband noise, leading to the successful identification of damage (within an error on the order of the damage size) using a triangulation algorithm.