• Title/Summary/Keyword: Mechanotransduction

검색결과 20건 처리시간 0.027초

New Fluid Flow System for Simulation of Mechanical Loading to Bone Cells During Human Gait Cycle

  • Ahn, Jae-Mok
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.377-386
    • /
    • 2007
  • Mechanical loading to bone cells using simple sine wave or constant wave fluid flow has been widely used for in vitro experiments. Human gait is characterized by a complex loading to bones of lower extremities which results from a series of events consisting of heel strike, foot flat and push-off during the stance phase of the gait cycle. Telemetric force analyses have shown that human femora are subject to multiphasic loading. Therefore, it would be ideal if the physiologic loading conditions during human walking can be used for in vitro mechanotransduction studies. Here, for a mechanotransduction study, we develop it fluid flow system (FFS) in order to simulate human physiologic mechanicalloading on bone cells. The development methods of the FFS including the COR (Center for Orthopedic Research), monitor program are presented. The FFS could generate various multiphasic loading conditions of human gaits with output flow. Wall shear distribution was very uniform, with 81 % of the effective loading area of the culture on a glass slide. Our results demonstrated that the FFS, provide a new translational approach for unveiling molecular mechanotransduction pathways in bone cells.

MiR-141-3p regulates myogenic differentiation in C2C12 myoblasts via CFL2-YAP-mediated mechanotransduction

  • Nguyen, Mai Thi;Lee, Wan
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.104-109
    • /
    • 2022
  • Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3'UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.

Double-String Model for Auditory Transduction of Drosophila

  • Lee, Woo Seok;Ahn, Kang-Hun;Lee, Jeongmi;Chung, Yun Doo;Mhatre, Natasha;Robert, Daniel
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1225-1229
    • /
    • 2018
  • The Drosophila auditory system consists of four large basal segments: the arista, the funiculus, the pedicel, and the scape. When an acoustic stimulus is applied to the arista and the funiculus their mechanical vibrations are transmitted to chordotonal neurons in Johnston's organ where mechanoelectric transduction arises. We study the mechanotransduction mechanism in the Drosophila auditory system by using a laser Doppler vibrometer (LDV) and extracellular electrophysiology. We find that large and small peaks appear alternatively and that the antenna vibration is asymmetric depending on whether the pedicel and the scape are fixed. Interestingly, we find that this asymmetric vibration accompanies the alternating neural peak structure. Here, we propose a mathematical model to explain the alternating peak structure by using a model consisting of two opposing neurons that are modeled as strings. Generally, strings have tension only when they are elongated. This property allows the alternating neural peaks for asymmetric antenna motion.

유체전단응력에 의하여 3T3-L1 지방세포가 받는 영향 (Effects of Fluid Shear Stress on 3T3-L1 Preadipocytes)

  • 이정근;이영훈;진희원;이서현;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권4호
    • /
    • pp.168-174
    • /
    • 2018
  • Adipocytes affect obesity through the regulation of lipid metabolism. Physical loading is an important regulator of fat tissue. There are ongoing in vitro studies inducing mechanotransduction on 3T3-L1 preadipocytes with mechanical stimulus in order to treat obesity by inhibiting adipogenesis and provoking cell death. In this study, our goal was to suggest a new therapy for obesity by investigating whether fluid shear stress (FSS) changes transcription factors on 3T3-L1 related with adipogenesis and cell death. FSS loading was applied to 3T3-L1 preadipocytes at 1Pa and 1Hz. After loading, bright field images were taken and an immunofluorescence assay was conducted to observe actin stress fiber formation. Western blot analysis was conducted to identify the activation of the ERK pathway as well as the adipogenic factors, which including C/EBPs and $PPAR{\gamma}$. The expression of osteopontin, a protein related to inflammation in adipose tissue, and cell death related factors, Bax, Bcl-2, and Beclin, were also measured. Results showed that FSS stimulated the formation of actin stress fibers in 3T3-L1 and also that the activation of C/EBPs decreased significantly when compared with the control group. $PPAR{\gamma}$ activation in the 2 hour FSS group was lower than the 1 hour FSS group, which implied that the results were time dependent. Additionally, there were no differences in the expression of cell death factors after FSS loading. In summary, similar to other fibroblasts, the formation of actin stress fibers induced by mechanotransduction may affect the differentiation of 3T3-L1, leading to inhibition of adipogenesis and inflammation.

Mechanotransduction in Cardiac Myocytes

  • Earm, Yung-E
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.17-17
    • /
    • 2001
  • It is well known that myocardial stretch causes changes in electrical signalling and contractility of the heart. For example, mechanical stretch depolarises the membrane potential of cardiac cells and alters the shape of action potentials. As a result, these effects either accelerate the frequency of heart rate or induce arrhythmias of the heart.(omitted)

  • PDF

BONES HAVE EARS

  • Stephen C. Cowin
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1055-1058
    • /
    • 2002
  • The movement of bone fluid from the region of the bone vasculature through the canaliculi and the lacunae of the surrounding mineralized tissue accomplishes three important tasks. First it transports nutrients to the osteocytes in the lacunae buried in the mineralized matrix. Second, it carries away the cell waste. Third, the bone fluid exerts a force on the cell process, a force that is large enough for the cell to sense. This is probably the basic mechanotrasduction mechanism in bone, the way in which bone senses the mechanical load to which it is subjected. The mechanism of bone fluid flow are described below with particular emphasis on mechanotransduction. Also described is the cell to cell communication by which higher frequency signals might be transferred, a potential mechanism in bone by which the small whole tissue strain is amplified so the bone cells can respond to it. One of the conclusions is that higher frequency low amplitude strains can maintain bone as effectively as low frequency low amplitude strains can maintain bone as effectively as low frequency high amplitude strains. This mechanism has many similarities with the mechanotransduction of acoustical signals in the ear. These conclusion leads to a paradigm shift in how to treat osteoporosis and how to cope with microgravity.

  • PDF

형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징 (Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor)

  • 장윤관;서정수;석명은;김태진
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.366-372
    • /
    • 2021
  • 캐드헤린-카테닌 복합체는 세포의 부착 접합부에서 힘의 전달에 중요한 역할을 하는 것으로 생각된다. 그러나 기계적 힘 신호를 시각화 하고 감지하는 적절한 도구의 부재로, 캐드헤린-카테닌 복합체가 세포 간 접합에서 힘 전달을 조절하는 기본 메커니즘은 아직 파악하기가 어렵다. 본 연구에서는 형광공명에너지전이를 기반으로 설계된 알파카테닌 센서를 사용하여 캐드헤린에 의해 매개되는 힘 전달을 시각화 하였다. 이러한 결과는 알파카테닌이 세포-세포 접합부에서 캐드헤린 매개 기계적에너지변환(mechanotransduction) 경로의 핵심적인 힘 트랜스듀서(force transducer) 임을 보여준다. 본 연구는 향후 기계적 힘의 세포-세포 상호간의 의사소통에 미치는 영향과 생리학적/병리학적 현상과의 관계를 연구하는 데 중요한 이해를 제공할 것이라 본다.

3T3-L1 지방전구세포에 대한 다양한 주파수 진동의 지방 생성 억제 효과 (Anti-adipogenic Effects of Vibration with Varied Frequencies on 3T3-L1 Preadipocytes)

  • 이영훈;이석호;정혜빈;정용찬;김민환;이은미;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권1호
    • /
    • pp.18-24
    • /
    • 2021
  • Vibration is a mechanical cue that can be applied to adipose tissues for the purpose of treating obesity. However, the exact correlation between vibration and other anti-adipogenic pathways, such as development of cytoskeleton and apoptosis, remains unknown. The objective of this study was to investigate the unknown anti-adipogenic effects of vibration with varied frequencies on preadipocytes. 3T3-L1 preadipocytes were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 5% calf serum at 37 ℃ with 5% CO2 in a humidified incubator. Vibration was generated using Arduino Uno microcontroller and vibration motor module with 1 V DC, and applied to preadipocytes for 3 days. Frequency conditions were set to 20, 55, and 90 Hz. Then, the expressions of p38 pathway, ROCK-1, α-actinin, Bax, Bcl-2, caspase-9, 8, and 3 were analyzed with western blot. As a result, p38 pathway was inhibited in 55 and 90 Hz while ROCK-1 and α-actinin were expressed in 20 Hz. Caspase-3, a terminal apoptotic factor, was activated in 20 Hz via extrinsic pathway rather than intrinsic pathway. Results suggest that various frequencies of vibration can inhibit adipogenesis via different pathways which sheds light on future mechanotransduction applications of vibration for the treatment of obesity.

Mechanosensitive Modulation of Receptor-Mediated Crossbridge Activation and Cytoskeletal Organization in Airway Smooth Muscle

  • Hai, Chi-Ming
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.535-547
    • /
    • 2000
  • Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for control1ing airway resistance in airway diseases.

  • PDF

Streamlined Shape of Endothelial Cells

  • Chung, Chan-Il;Chang, Jun-Keun;Min, Byoung-Goo;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.861-866
    • /
    • 2000
  • Flow induced shape change is important for spatial interpretation of vascular response and for understanding of mechanotransduction in a single cell. We investigated the possible shapes of endothelial cell (EC) in a mathematical model and compared these with experimental results. The linearized analytic solution from the sinusoidal wavy wall and Stokes flow was applied with the constraint of EC volume. The three dimensional structure of the human umbilical vein endothelial cell was visualized in static culture or after various durations of shear stress (20 $dyne/cm^2$ for 5, 10, 20, 40, 60, 120min). The shape ratio (width: length: height) of model agreed with that of the experimental result, which represented the drag force minimizing shape of stream-lining. EC would be streamlined in order to accommodate to the shear flow environmented by active reconstruction of cytoskeletons and membranes through a drag force the sensing mechanism.

  • PDF