• 제목/요약/키워드: Mechanosensation

검색결과 6건 처리시간 0.019초

기계적으로 다른 환경에서 예쁜 꼬마선충의 기는 파형 변화 (Effects of Mechanically Different Environments on the Crawling Waveform of Caenorhabditis Elegans)

  • 김대연;변수영;김세호;신현정
    • 대한기계학회논문집B
    • /
    • 제36권2호
    • /
    • pp.125-130
    • /
    • 2012
  • 예쁜 꼬마선충은 모델 생물로서 지금까지 행동과 이를 제어하는 신경세포들 사이의 관계를 밝히기 위한 많은 연구들이 수행되었다. 본 연구에서는 표면의 강성이 다른 고체 환경에서 꼬마선충의 운동관련 적응 행동을 연구하였다. 꼬마선충은 고체 위에서 움직일 때 기는 파형을 조절함으로써 기계적으로 다른 환경에 적응을 한다. 즉, 외부환경이 더 단단해질수록 꼬마선충의 기는 파형의 진폭과 파장이 감소하게 된다. 흥미로운 사실은 기계적인 감각에 결함이 있는 돌연변이의 경우 정상 꼬마선충과는 다른 적응행동을 보인다는 것이다. 이것은 기계적으로 다른 환경에 효과적으로 적응하기 위해서 기계적인 자극을 감지하고 반응하고 적응하는 기작이 있음을 의미한다. 이에 본 연구에서는 꼬마선충이 기계적으로 다른 환경에 적응하는 과정을 설명할 수 있는 신경회로 모델을 제안하였다.

Transient Receptor Potential Channels and Metabolism

  • Dhakal, Subash;Lee, Youngseok
    • Molecules and Cells
    • /
    • 제42권8호
    • /
    • pp.569-578
    • /
    • 2019
  • Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.

Proteomic Changes in the Sound Vibration-Treated Arabidopsis thaliana Facilitates Defense Response during Botrytis cinerea Infection

  • Ghosh, Ritesh;Choi, Bosung;Kwon, Young Sang;Bashir, Tufail;Bae, Dong-Won;Bae, Hanhong
    • The Plant Pathology Journal
    • /
    • 제35권6호
    • /
    • pp.609-622
    • /
    • 2019
  • Sound vibration (SV) treatment can trigger various molecular and physiological changes in plants. Previously, we showed that pre-exposure of Arabidopsis plants to SV boosts its defense response against Botrytis cinerea fungus. The present study was aimed to investigate the changes in the proteome states in the SV-treated Arabidopsis during disease progression. Proteomics analysis identified several upregulated proteins in the SV-infected plants (i.e., SV-treated plants carrying Botrytis infection). These upregulated proteins are involved in a plethora of biological functions, e.g., primary metabolism (i.e., glycolysis, tricarboxylic acid cycle, ATP synthesis, cysteine metabolism, and photosynthesis), redox homeostasis, and defense response. Additionally, our enzyme assays confirmed the enhanced activity of antioxidant enzymes in the SV-infected plants compared to control plants. Broadly, our results suggest that SV pre-treatment evokes a more efficient defense response in the SV-infected plants by modulating the primary metabolism and reactive oxygen species scavenging activity.

ASIC2a-dependent increase of ASIC3 surface expression enhances the sustained component of the currents

  • Kweon, Hae-Jin;Cho, Jin-Hwa;Jang, Il-Sung;Suh, Byung-Chang
    • BMB Reports
    • /
    • 제49권10호
    • /
    • pp.542-547
    • /
    • 2016
  • Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. Proton sensing by ASICs has been known to mediate pain, mechanosensation, taste transduction, learning and memory, and fear. In this study, we investigated the differential subcellular localization of ASIC2a and ASIC3 in heterologous expression systems. While ASIC2a targeted the cell surface itself, ASIC3 was mostly accumulated in the ER with partial expression in the plasma membrane. However, when ASIC3 was co-expressed with ASIC2a, its surface expression was markedly increased. By using bimolecular fluorescence complementation (BiFC) assay, we confirmed the heteromeric association between ASIC2a and ASIC3 subunits. In addition, we observed that the ASIC2a-dependent surface trafficking of ASIC3 remarkably enhanced the sustained component of the currents. Our study demonstrates that ASIC2a can increase the membrane conductance sensitivity to protons by facilitating the surface expression of ASIC3 through herteromeric assembly.

Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation

  • Kweon, Hae-Jin;Suh, Byung-Chang
    • BMB Reports
    • /
    • 제46권6호
    • /
    • pp.295-304
    • /
    • 2013
  • Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, $Zn^{2+}$, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel's large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-$HT_2$. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated.

Ionotropic Receptor 76b Is Required for Gustatory Aversion to Excessive Na+ in Drosophila

  • Lee, Min Jung;Sung, Ha Yeon;Jo, HyunJi;Kim, Hyung-Wook;Choi, Min Sung;Kwon, Jae Young;Kang, KyeongJin
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.787-795
    • /
    • 2017
  • Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by $Na^+$-rich food requires Ionotropic Receptor 76b (Ir76b) in Drosophila labellar gustatory receptor neurons (GRNs). Concentrated sodium solutions with various anions caused feeding suppression dependent on Ir76b. Feeding aversion to caffeine and high concentrations of divalent cations and sorbitol was unimpaired in Ir76b-deficient animals, indicating sensory specificity of Ir76b-dependent $Na^+$ detection and the irrelevance of hyperosmolarity-driven mechanosensation to Ir76b-mediated feeding aversion. Ir76b-dependent $Na^+$-sensing GRNs in both L- and s-bristles are required for repulsion as opposed to the previous report where the L-bristle GRNs direct only low-$Na^+$ attraction. Our work extends the physiological implications of Ir76b from low-$Na^+$ attraction to high-$Na^+$ aversion, prompting further investigation of the physiological mechanisms that modulate two competing components of $Na^+$-evoked gustation coded in heterogeneous Ir76b-positive GRNs.