• Title/Summary/Keyword: Mechanization systems

Search Result 54, Processing Time 0.027 seconds

Development of an Expert System for Mechanization of Entrusted Farming (위탁영농(委託營農)을 위한 기계화(機械化) 전문가 시스템 개발)

  • Chang, D.I.;Kim, S.R.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.258-273
    • /
    • 1994
  • In this study, an expert system named ESMEF (Expert System for Mechanized Entrusted Farming) was developed. The function of ESMEF is to provide the various data and informations for entrusted farming such as farm machinery management data, mechanization systems by farm sizes, number of units and sizes of machinery needed, machinery replacement analysis, mechanization costs analysis. Mechanization systems were selected by ESMEF for different farming sizes of Chungnam Province and an economic analysis was conducted as an example. The results showed that the farm machinery purchasing costs were 1,344~4,829 thousand won per ha and there was no significant difference for farm sizes above 60 ha. The total annual machinery costs were 3,595~4,537 thousand won per ha, and a minimum cost was appeared for farm size of l00ha at first. According to this analysis, an optimum entrusted farming size would be 100ha by the present available farm machinery systems.

  • PDF

Investigation on Selective Mechanization for Wet Season Rice Cultivation in Bangladesh

  • Islam, AKM Saiful;Islam, Md Tariqul;Rahman, Md Shakilur;Rahman, Md Abdur;Kim, Youngjung
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.294-303
    • /
    • 2016
  • Purpose: This study aimed to evaluate the profitability of four selective mechanization systems in rice cultivation. Methods: Field experiments were conducted in the farmers' field during the wet season (June to November) of 2015 in Bangladesh. Mechanization systems were applied to evaluate four different selective levels (treatment) in eleven consequent operations. Seedlings were raised in a traditional seedbed and trays for manual and mechanical transplanting, respectively. Land preparation, irrigation, fertilizer, pesticide, carrying, and threshing and cleaning operations were performed using the same method in all the experimental plots. The mechanical options in the transplanting, weeding, and harvesting operations were changed. The mechanization systems were $S_1$ = hand transplanting + hand weeding + harvesting by sickle, $S_2$ = mechanical transplanting + Bangladesh Rice Research Institute (BRRI) weeder + reaper, $S_3$ = mechanical transplanting + BRRI power weeder + reaper, and $S_4$ = mechanical transplanting + herbicide + reaper. This experiment was performed in a randomized complete block design with four replications. Power tiller, rice transplanter, BRRI weeder, BRRI power weeder, self-propelled reaper, BRRI open drum thresher, and BRRI winnower were used in the respective operations. Accordingly, the techno-economic performances of the different technologies were calculated and compared with those of the traditional system. Results: The mechanically transplanted plot produced 6-10% more yield than the hand transplanted plot because of the use of tender-aged seedlings. Mechanical transplanting reduced 61% labor and 18% cost compared to manual transplanting. The BRRI weeder, BRRI power weeder, and herbicide application reduced 74, 91, and 98% labor, respectively. The latter also saved 72, 63, and 82% cost, respectively, compared to hand weeding. Herbicide application reduced the substantial amount of labor and cost in the weeding operation. Mechanical harvesting also saved 96% labor and 72% cost compared to the traditional method of harvesting using sickle. Selective mechanization saved 15-17% input cost compared to the traditional method of rice cultivation. Conclusions: Mechanical transplanting with the safe use of herbicide and harvesting by reaper is the most cost- and labor-saving operation. The method might be the recommended set of selective mechanization for enhancing productivity.

Performance of Air Source Heat Pump with a Fiber Belt Heat Regeneration System (섬유벨트 열재생 시스템을 부착한 공기 열원 열펌프의 난방 성능 특성)

  • 유영선;장진택;김영중;강금춘;윤진하;이건중
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.385-390
    • /
    • 2000
  • The heat pump is one of heating and cooling systems driven by electricity using natural energy as a heat source. The heat pump system was mainly adopted to a cooling system or a refrigeration system. In regions with a large amount of electricity, it is used as a heating system or a heating and cooling system of houses, buildings and agricultural facilities. During cold weather, air source heat pumps do not work well because of some technical problems, such as frosting on evaporator coil when outside air temperature is below -5$^{\circ}C$. In this research, the heat regenerative technology was employed to eliminate the frosting on evaporator coil and improve the COP of the heat pump system. This fiber belt heat regeneration system(FBHRS) has very simple structure consisting of a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with a FBHRS yielded an impressive COP higher than 3.5 at the outside air temperature of -7$^{\circ}C$ in heating mode.

  • PDF

Re-prioritizing of Prospective and Strategic Technologies for Future Agricultural Mechanization using AHP (AHP를 이용한 농업기계분야의 미래 유망 및 전략 기술에 대한 우선순위 재설정)

  • Cho, K.T.;Chang, D.I.;Shin, B.C.;Han, J.I.;Kim, J.Y.;Lee, J.I.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.142-148
    • /
    • 2008
  • The study was focused on setting priority for future core technologies in agricultural mechanization using AHP (Analytic Hierarchy Process). A total of 23 technologies was selected by specialists. Evaluation criteria for the priority setting were decided as 'technology', 'marketability', and 'publicity'. Thirteen specialists in agricultural mechanization answered the questionnaire for AHP. As the results, 'technology' was decided as the most important evaluation criterion. 'feasibility' in 'technology' criterion, 'market growth' in 'marketability' criterion, and 'impact to other industry' in 'publicity' criterion were decided as sub-criteria in each criterion. The most important technology was 'Development of portable safety evaluation system for fresh and convenient agricultural products'.

Development of Rice Yield Prediction System of Head-Feed Type Combine Harvester (자탈형 콤바인의 실시간 벼 수확량 예측 시스템 개발)

  • Sang Hee Lee;So Young Shin;Deok Gyu Choi;Won-Kyung Kim;Seok Pyo Moon;Chang Uk Cheon;Seok Ho Park;Youn Koo Kang;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.36-43
    • /
    • 2024
  • The yield is basic and necessary information in precision agriculture that reduces input resources and enhances productivity. Yield information is important because it can be used to set up farming plans and evaluate farming results. Yield monitoring systems are commercialized in the United States and Japan but not in Korea. Therefore, such a system must be developed. This study was conducted to develop a yield monitoring system that improved performance by correcting a previously developed flow sensor using a grain tank-weighing system. An impact-plated type flow sensor was installed in a grain tank where grains are placed, and grain tank-weighing sensors were installed under the grain tank to estimate the weight of the grain inside the tank. The grain flow rate and grain weight prediction models showed high correlations, with coefficient of determinations (R2) of 0.9979 and 0.9991, respectively. A main controller of the yield monitoring system that calculated the real-time yield using a sensor output value was also developed and installed in a combine harvester. Field tests of the combine harvester yield monitoring system were conducted in a rice paddy field. The developed yield monitoring system showed high accuracy with an error of 0.13%. Therefore, the newly developed yield monitoring system can be used to predict grain weight with high accuracy.

Research on the Impact of Agricultural Mechanization Service on Wheat Planting Cost: A Case Study of Henan Province

  • Cheng, Zhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1127-1137
    • /
    • 2021
  • Given the different effects of agricultural mechanization on various stages of wheat planting in Henan, this article selects 78 observation samples from Henan, a major wheat-growing province. It uses different research methods (multiple linear regression, social network analysis model, multi-layer sensory nerves network) to conduct a comparative study, and the calculation results of the model show that the experimental results have a strong convergence and consistency. Agricultural mechanization services have significant effects on the three stages of wheat planting: harvesting, plowing and sowing. A higher degree of mechanized service in several stages can reduce the cost of growing wheat on family farms.

Measurement of Variability of Chlorophyll Contents in Paddy Fields Using Two Kinds of Chlorophyll Meter (2종의 엽록소 측정기를 이용한 포장내 벼의 엽록소 함량 분포 측정)

  • 성제훈;서상룡;박우풍;정인규;김상철;이충근
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.245-252
    • /
    • 2003
  • This study was investigated the possibility of measuring chlorophyll in paddy crops using two kinds of chlorophyll meters(SPAD-502, Field Scout). The results of correlation analysis showed the 0.7758(r$^2$) relationship between the chlorophyll contents of paddy leaves measured by SPAD and spectrophotometer. It indicates that chlorophyll content in paddy crops could be measured using the SPAD. Considering the data of the SPAD and Field Scout there was significant difference between their chlorophyll contents measured by the SPAD and Field Scout. Likewise, such results were consistent with the corrected data using light intensity. According to the results, it can be concluded that it is difficult to describe the rice chlorophyll measured by the Field Scout more accurately than the SPAD when using one standard spectrum and another spectrum for reflectance measuring. The chlorophyll variance measured at a research institute and a farmer's field revealed that the output of SPAD was more reliable than that of the Field Scout.

Status of Mechanization of Small Farms in India

  • Ojha, T.P.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.263-269
    • /
    • 1996
  • In indian agricultural , the energy use pattern has played dominant role in influencing the level of mechanization . Besides that the agro-climatic factors as well as the size of holdings do affect the degree of mechanization . Nearly 30 percent of total cultivated area is owned by l76 percent of the small and tiny land holders each owning even less than a hectare. On the other hand, about 2 percent of land owners cultivate land. These variabilitieshave greatly influenced the ownership of power sources on Indian farms. Small farmers, employ human and animal energies with the use of hand tools and animal drawn equipments. Whereases, the use of tractors, power tillers, electric motors, etc. on small farms is on a marginal scale. There are few pockets and also extensive wheat growing regions where mechanical and electrical power sources are extensively used in production agriculture leading to about 185% of cropping intensity . In that region, the animal energy is employed for on the farm transport of fertilizers, fodders and fuel to support milch animals and other household activities . Inspite of high degree of mechanization, the harvesting of crops is done by human labour with few exceptions of harvesting wheat crops by combines in few pockets. In overall assessment of mechanization, the following conclusions are drawn : ⅰ) Farm operation which show a growing trend of mechanization are (a) tillge, (b) seedling (c) Irrigation (d) Plant protection application (e) Threshing and (f) Transport . ⅱ) Crop cultivation system in respect of wheat, maize and sorghum have been greatly mechanized. ⅲ) The least mechanized cropping systems are (a) vegetable production and (b) cultivation of sugarcane, cotton, rice and pulses. ⅳ) Annual production of tractor has touched the figure of 280.000 by 1995 and the total number has crossed 1.5million on Indian farms.

  • PDF

A Study on GPS/INS Integration Considering Low-Grade Sensors (저급 센서를 고려한 GPS/INS 결합기법 연구)

  • Park, Je Doo;Kim, Minwoo;Lee, Je Young;Kim, Hee Sung;Lee, Hyung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • This paper proposes an efficient integration method for GPS (Global Positioning System) and INS (Inertial Navigation System). To obtain accuracy and computational conveniency at the same time with low cost global positioning system receivers and micro mechanical inertial sensors, a new mechanization method and a new filter architecture are proposed. The proposed mechanization method simplifies velocity and attitude computation by eliminating the need to compute complex transport rate related to the locally-level frame which continuously changes due to unpredictable vehicle motions. The proposed filter architecture adopts two heterogeneous filters, i.e. position-domain Hatch filter and velocity-aided Kalman filter. Due to distict characteristics of the two filters and the distribution of computation into the two hetegrogeneous filters, it eliminates the cascaded filter problem of the conventional loosly-coupled integration method and mitigates the computational burden of the conventional tightly-coupled integration method. An experiment result with field-collected measurements verifies the feasibility of the proposed method.

Analysis of the power requirements of a 55 kW class agricultural tractor during a garlic harvesting operation

  • Seung-Min, Baek;Wan-Soo, Kim;Seung-Yun, Baek;Hyeon-Ho, Jeon;Jun-Ho, Lee;Ye-In, Song;Yong, Choi;Young-Keun, Kim;Sang-Hee, Lee;Yong-Joo, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.1039-1050
    • /
    • 2021
  • The purpose of this study is to measure load data for a 55 kW class agricultural tractor during a harvesting operation and to analyze the required power according to the working conditions. A field test was conducted at three different tractor speeds (1.2, 1.3, and 1.4 km·h-1). A load measurement system was developed for the front axles, rear axles, and for power take-off (PTO). The torque and rotational speeds of the axles and PTO were measured during the field test and were calculated as the required power. The results showed that the total required power was in the range of 4.86 - 5.48 kW during the harvesting operation according to the tractor speed, and it was confirmed that this represents a ratio of 8.8 - 10.0% of the engine rated power. Also, it was confirmed that the required power of the axle and PTO increased as the tractor speed increased. In future studies, we plan to supplement the measurement system for a tractor to include a hydraulic system and perform a field test for harvesting various underground crops.