• Title/Summary/Keyword: Mechanism reduction

Search Result 1,743, Processing Time 0.04 seconds

Structure Dependent Electrocatalysis for Electroreduction of Oxygen at Nanoporous Gold Surfaces (나노다공성 금 표면상에서 구조 변화에 따른 전기화학적 산소환원 촉매활성)

  • Choi, Su-Hee;Choi, Kyoung-Min;Kim, Jong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • We investigate the electrocatalytic activities for oxygen reduction at nanoporous gold (NPG) surfaces fabricated by selective dissolution of Ag from electrodeposited Ag-Au layers on electrode surfaces. The structure of NPG was controlled by changing the concentration ratios of precursor metal complexes during the electrodeposition of Ag-Au layers and the corresponding surface morphology and surface area was examined. NPG structures with Ag/Au ratio of 2.0 exhibited the highest electrocatalytic activity for oxygen reduction, where the nanoporous structure plays a key role, but the surface area does not affect on the electrocatalytic activity. The mechanism of electroreduction of oxygen was investigated by rotating disk electrode techniques. In acidic media, oxygen was first reduced to hydrogen peroxide followed by further reduction to water through 2-step 4-electron mechanism, whereas the oxygen was reduced directly to water by 4-electron mechanism in basic media.

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

Reduction Mechanism of $Fe_2O_3$ ($Fe_2O_3$의 환원반응 기구)

  • 최태운;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.152-156
    • /
    • 1981
  • $Fe_2O_3$ was reduced over the temperature range of 600-100$0^{\circ}C$ in both the atmospheres for the Fe-stable and FeO-stable states. It was found that the reduction follows first order kinetics and the reduction of $Fe_3O_3$ to $Fe_3O_4$ is the rate-controlling step.

  • PDF

Noise Evaluation and Measures of Cooling Tower at Apartment (아파트 냉각탑의 소음 평가 및 대책)

  • Lee, Kyu-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1020-1023
    • /
    • 2004
  • Recently, Cooling tower are used the necessary element in a residential area and living space on the viewpoint of indoor temperature control. The purpose of this study is to assistance the comfortable environment and economical measures of noise transmission mechanism on tile cooling tower. The results show that noise evaluation interact the main factor of distance reduction and diffraction reduction. Noise criterion apply to the NC level and equivalent transmission loss about already the design of noise reduction.

  • PDF

Reaction Conditions and Mechanism of Electrolytic Reduction of Dibenzoylmethane$^\dag$

  • Kang, Sung-Chul;Chon, Jung-Kyoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.414-418
    • /
    • 1987
  • Electrochemical reduction of dibenzoylmethane was studied on mercury electrode by means of cyclic voltammetry, polarography and potentiostatic measurements in ethanol-water system. In acidic solutions monomeric pinacol was produced by irreversible two-electron process while monomeric and dimeric pinacol were competitively produced by the same process in neutral solution. However, in basic solution the dimeric pinacol was mostly produced through radical by irreversible one-electron transfer process. Mechanisms of the reduction of dibenzoylmethane are deduced from Tafel slope, pH dependance and reaction order with respect to the concentration of dibenzoylmethane in the solution of various pH.

Electrochemical Reduction of Nitrobenzene and Substituted Nitrobenzenes on Lead Electrode

  • Chon, Jung-Kyoon;Paik, Woon-Kie
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1981
  • Electrochemical reduction of nitrobenzene and substituted nitrobenzenes on lead electrode was studied by galvano-static measurements and cyclic voltammetry in basic ethanol-water solvents. Nitroso compounds or hydroxylamines were detected as the main reduction product depending on the potential. Mechanisms of production and further reduction of substituted and unsubstituted nitrosobenzenes are deduced from Tafel slope, pH dependence and reaction order. The reduction of most of the substituted nitrobenzenes to corresponding nitrosobenzene derivatives seemed to follow the reaction mechanism of nitrobenzene reduction with a few exceptions. A Hammett type relationship between the magnitude of the reduction current and the kinds of substituents was found with the ${\rho}$ value of 0.54.

Adsorption of Macrocyclic Cobalt Complex on a Glassy Carbon Electrode for the Electrocatalytic Reduction of $O_2$

  • 강찬
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.754-760
    • /
    • 1998
  • It was found that the adsorption of a cobalt(III) complex with a macrocyclic ligand, C-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (hmc), was induced on a glassy carbon electrode by heavily oxidizing the electrode surface. Adsorption properties are discussed. The glassy carbon electrode with the adsorbed complex was employed to see the catalytic activities for the electro-reduction of O2. In the presence of oxygen, reduction of (hmc)Co3+ showed two cathodic waves in cyclic voltammetry. Compared to the edge plane graphite electrode at which two cathodic waves were also observed in a previous study, catalytic reduction of O2 occurred in the potential region of the first wave while it happened in the second wave region with the other electrode. A rotating disk electrode after the same treatment was employed to study the mechanism of the O2 reduction and two-electron reduction of O2 was observed. The difference from the previous results was explained by the different reactivity of the (hmc)CoOOH2+ intermediate, which is produced after the two electron reduction of (hmc)Co3+ in the presence of O2.

The Hydrogen Reduction Behavior of MoO3 Powder (MoO3 분말의 수소환원거동)

  • Koo, Won Beom;Yoo, Kyoungkeun;Kim, Hanggoo
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The hydrogen reduction behavior of molybdenum oxides was studied using a horizontal-tube reactor. Reduction was carried out in two stages: MoO3 → MoO2 and MoO2 → Mo. In the first stage, a mixed gas composed of 30 vol% H2 and 70 vol% Ar was selected for the MoO3 reduction because of its highly exothermic reaction. The temperature ranged from 550 to 600 ℃, and the residence time ranged from 30 to 150 min. In the second step, pure H2 gas was used for the MoO2 reduction, and the temperature and residence time ranges were 700-750 ℃ and 30-150 min, respectively. The hydrogen reduction behavior of molybdenum oxides was found to be somewhat different between the two stages. For the first stage, a temperature dependence of the reaction rate was observed, and the best curve fittings were obtained with a surface reaction control mechanism, despite the presence of intermediate oxides under the conditions of this study. Based on this mechanism, the activation energy and pre-exponential were calculated as 85.0 kJ/mol and 9.18 × 107, respectively. In addition, the pore size within a particle increases with the temperature and residence time. In the second stage, a temperature dependence of the reaction rate was also observed; however, the surface reaction control mechanism fit only the early part, which can be ascribed to the degradation of the oxide crystals by a volume change as the MoO2 → Mo phase transformation proceeded in the later part.

Twisted String-based Upper Limb Exoskeleton (줄꼬임에 기반한 상지 외골격 로봇)

  • Lee, Seung-Jun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.960-966
    • /
    • 2016
  • This paper proposes a new concept of a soft and wearable upper-limb exoskeleton. A novel actuation principle, called the twisted string actuation principle, is implemented to make it lightweight, soft, and therefore easily wearable. Its power transmission mechanism and harness are designed to be soft and wearable, yet have enough control accuracy for rehabilitation. In addition to force transmission optimization, a speed enlargement mechanism is newly introduced in order to increase the contraction speed of the twisted string actuation mechanism by sacrificing the unnecessarily large gear reduction ratio of the twisted string mechanism. A prototype has been tested for mirroring therapy, and the feasibility of the proposed mechanism has been shown through a sufficiently accurate tracking performance.