• Title/Summary/Keyword: Mechanics

Search Result 11,163, Processing Time 0.035 seconds

Boundary stress resolution and its application to adaptive finite element analysis

  • Deng, Jianhui;Zheng, Hong;Ge, Xiurun
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.115-124
    • /
    • 1998
  • A novel boundary stress resolution method is suggested in this paper, which is based upon the displacements of finite element analysis and of high precision with stress boundary condition strictly satisfied. The method is used to modify the Zienkiewicz-Zhu ($Z^2$) a posteriori error estimator and for the h-version adaptive finite element analysis of crack problems. Successful results are obtained.

Modal control algorithm on optimal control of intelligent structure shape

  • Yao, Guo Feng;Chen, Su Huan;Wang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.451-462
    • /
    • 2003
  • In this paper, a new block iterative algorithm is presented by using the special feature of the continuous Riccati equation in the optimal shape control. Because the real-time control require that the CPU time should be as short as possible, an appropriate modal control algorithm is sought. The computing cost is less than the one of the all state feedback control. A numerical example is given to illustrate the algorithm.

Stress analyses of solids with rectangular holes by 3-D special hybrid stress elements

  • Tian, Z.S.;Liu, J.S.;Fang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.193-199
    • /
    • 1995
  • Two kinds of special 3-dimensional 12-node finite elements-each one contains a traction-free planar surface-have been developed based on Hellinger-Reissner principle by assumed stress hybrid method. Example solutions have demonstrated the advantage of using these special elements for analyzing plates and solids with rectangular holes.

ON THE PROPER QUADRATIC FIRST INTEGRALS IN SYMPLECTIC MANIFOLDS

  • Ryu, Shi-Kyu
    • The Pure and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.83-94
    • /
    • 1996
  • Classical mechanics begins with some variants of Newton's laws. Lagrangian mechanics describes motion of a mechanical system in the configuration space which is a differential manifold defined by holonomic constraints. For a conservative system, the equations of motion are derived from the Lagrangian function on Hamilton's variational principle as a system of the second order differential equations. Thus, for conservative systems, Newtonian mechanics is a particular case of Lagrangian mechanics.(omitted)

  • PDF

Camera Imaging Lens Fabrication using Wafer-Scale UV Embossing Process

  • Jeong, Ho-Seop;Kim, Sung-Hwa;Shin, Dong-Ik;Lee, Seok-Cheon;Jin, Young-Su;Noh, Jung-Eun;Oh, Hye-Ran;Lee, Ki-Un;Song, Seok-Ho;Park, Woo-Je
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.124-129
    • /
    • 2006
  • We have developed a compact and cost-effective camera module on the basis of wafer-scale-replica processing. A multiple-layered structure of several aspheric lenses in a mobile-phone camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. This wafer-scale processing leads to at least 95% yield in mass-production, and potentially to a very slim phone with camera-module less than 2 mm in thickness. We have demonstrated a VGA camera module fabricated by the wafer-scale-replica processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having $230{\mu}m$ sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in orderto achieve a higher resolution in wafer-scaled lenses for mobile-phone camera modules.

Analysis of Hydro-Fracturing Test Results Using a Mechanical Crack Model (파괴역학모델은 이용한 수압파쇄시험 결과의 해석에 관한 연구)

  • 최용근;배성호;박배한;이정인;전석원
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.237-247
    • /
    • 2001
  • In this study, the fracture mechanics model as well as the elastic model was reviewed theoretically and four field case studies were conducted to investigate the feasibility of fracture mechanics model for hydraulic fracturing test. There was a difference between the result by fracture mechanics model and the one by elastic model. And the smaller initial crack length is, the larger the difference is. It is considered that the fracture mechanics model can be applied to the specific case of which the crack length is known. In this study, the rock tensile strength is measured using fracture mechanics model, brazilian test and elastic model. The measured tensile strength by the fracture mechanics model is the largest and the elastic model is the smallest. This result is due to the size effect of the each test. And the tensile strength from the elastic model for hydraulic fracturing test can be used to estimate the in-situ rock tensile strength.

  • PDF