• 제목/요약/키워드: Mechanical stress

검색결과 7,810건 처리시간 0.033초

A Theoretical Comparison of Two Possible Shape Memory Processes in Shape Memory Alloy Reinforced Metal Matrix Composite

  • Lee Jae Kon;Kim Gi Dae
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1460-1468
    • /
    • 2005
  • Two possible shape memory processes, austenite to detwinned martensite transformation and twinned martensite to detwinned martensite transformation of a shape memory alloy have been modeled and examined. Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used for modeling of the shape memory processes of TiNi shape memory alloy reinforced aluminum matrix composite. The shape memory amount of shape memory alloy, plastic strain and residual stress in the matrix are computed and compared for the two processes. It is shown that the shape memory amount shows differences in a small prestrain region, but the plastic strain and the residual stress in the matrix show differences in the whole prestrain region. The shape memory process with initially martensitic state of the shape memory alloy would be favorable to the increase in the yield stress of the composite owing to the large compressive residual stress and plastic strain in the matrix.

Numerical simulation of relation between interface topography and residual stress in thermal barrier coatings

  • Yao, Guo-Feng;Ma, Hong-Mei;Zhang, Lin-Wen
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.423-431
    • /
    • 2008
  • With respect to thermal barrier coating, the analysis of interface cohesion and residual stress is important to the life of TBC from mechanical view point. Up to now, there is not a model of describing interface cohesion. In the paper, we give a simple model of computing residual stress and study the residual stress of TBC with ANSYS. The distribution of the residual stress in different interface topography and the relationship between the residual stress and the interface topography dimension are presented.

The Fracture Distribution in ITO Coating with Compressive Bending Stress on Polymer Substrates

  • Lee, Sang-Keuk;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권6호
    • /
    • pp.5-8
    • /
    • 2003
  • In this paper, we investigated the fracture distribution in indium-tin-oxide (ITO) coating with compressive bending stress on polymer. Under compressive strain, the ITO island delaminates, buckles and cracks. As the mechanical compressive stress increases, the buckling width of ITO seems to be increased. These created cracks are related to well-defined distribution of mechanical stress in ITO island-arrays. We related. mechanical bending stress to crack distribution and derived theoretical equation of position-dependent bending stress. And, we verified the bending stress's magnitude to crack distribution observed from optical photographs.

SS330 용접재에서 재분포 잔류응력 및 균열닫힘영향을 고려한 파로거동에 관한 연구 (A Study on Fatigue Behavior Considering Effects of Redistributing Tensile Residual Stress and Crack Closure in SS330 Weldment)

  • 이용복;정진성;조남익
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2234-2245
    • /
    • 1996
  • In this study residual stress in weldment was considered about the effect on the fatigue propagation and about the effect of redistribution of residual stress. Then, fatigue tests were conducted by the center notched specimens machined with welded plate. The residual stress and its redistribution after the crack growth were measured by the magnetizing stress indicator and hole-drilling method. Fatigue crack propagation was estimated by the specimens having residual stress redistributed after the cracks growth and having the effects of crack closure. Crack growth rates were predicted and compared with experimental results. It had been found that the predicted crack propagation rates have a good agreement with experimental results when the redistribution of residual stress was considerd.

Stress Analysis of Femoral Stems on Non-Cemented Total Hip Replacement - A Three-Dimensional Finite Element Analysis -

  • Kim, Sung-Kon;Chae, Soo-Won;Jeong, Jung-Hwan
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.263-266
    • /
    • 1997
  • Three dimensional numerical model based on the finite element method(FEM) were developed to predict the mechanical behavior of hip implants. The purpose of this study is to investigate the stress distribution of two types of cementless total hip replacement femoral component -a straight stem and a curved stem, and to compare their effect on the stress shielding between two types by three dimensional finite element method. The authors analyzed von Mises stress in the cortex & stem and compared the stress between the straight and the curved stem. In comparison of stresses between two different design of femoral stem, there was 25% more decrease of stress in straight stem than curved stem in the medial cortex at proximal region. The straight stem had consistently much lower stresses than the curved stem throughout the whole medial cortex with maximum 70% reduction of stress. However, there was little change in stress between nature and 2 implanted femur throughout the lateral cortex. Stress of femoral stem was much higher in the straight stem than the curved stem up to 60%. The straight stem had more chance of stress shielding and a risk of fatigue fracture of the stem compared with the curved stem in noncement hip arthroplasty. In design of femoral stem still we have to consider to develop design to distribute more even stress on the proximal medial cortex.

  • PDF

잔류응력 효과를 고려한 고혈압 상태에 있는 혈관벽 내의 응력분포에 대한 연구 (A Study on Effect of Residual Stress on Stress Distribution of Arterial Walls Under High Blood Pressure)

  • 최재우;최덕기
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1219-1227
    • /
    • 2011
  • 최근 생활 환경의 변화로 혈관계 질병으로 고통 받는 사람들이 늘어가고 있다. 이에 따라 질병을 치료하기 위해 여러 가지 시술을 하게 되는데 있어서 혈관의 역학적인 분석과 해석이 확보되어야 한다. 본 논문에서는 초탄성 이론을 기초로 하여 탄성 대변형에서의 혈관의 역학적인 거동에 대해 알아 보았다. 이를 통하여 정상혈압과 고혈압일 때 혈관에 작용하는 응력과 열림각으로 나타낼 수 있는 잔류 응력의 효과가 각 방향 응력분포에 미치는 영향에 대해 연구하였다. 그 결과 잔류응력 효과를 적용시켰을 때 혈관 벽내에 작용하는 최대응력은 잔류응력 효과가 없을 경우와 비교하여 약 50%응력 감소가 나타남을 확인할 수 있고, 고혈압의 경우 정상혈압일 때보다 2배정도의 큰 응력이 혈관벽에 작용함을 확인 할 수 있었다.

열-기계 연계 해석을 이용한 에너지 제어 용착 및 담금질 공정으로 제작된 시편의 잔류응력 특성 분석 (Investigation of Residual Stress Characteristics of Specimen Fabricated by DED and Quenching Processes Using Thermo-mechanical Analysis)

  • 황안재;이광규;안동규
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.113-122
    • /
    • 2021
  • Complicated residual stress distributions occur in the vicinity of a deposited region via directed energy deposition (DED) process owing to the rapid heating and cooling cycle of the deposited region and the substrate. The residual stress can cause defects and premature failure in the vicinity of the deposited region. Several heat treatment technologies have been extensively researched and applied on the part deposited by the DED process to relieve the residual stress. The aim of this study was to investigate the residual stress characteristics of a specimen fabricated by DED and a quenching process using thermomechanical analyses. A coupled thermomechanical analysis technique was adopted to predict the residual stress distribution in the vicinity of the deposited region subsequent to the quenching step. The results of the finite element (FE) analyses for the deposition and the cooling measures show that the residual stress in the vicinity of the deposited region significantly increases after the completion of the elastic recovery. The results of the FE analyses for the heating and quenching stages further indicate that the residual stress in the vicinity of the deposited region remarkably increases at the initial stage of quenching. In addition, it is observed that the residual stress for quenching is lesser than that after the elastic recovery, irrespective of the deposited material.

Effect of material mechanical differences on shear properties of contact zone composite samples: Experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Liu, Xiaoyun;Yang, Fan;Tan, Wenkan
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.153-162
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the shear tests and numerical studies were carried out. The effects of the differences in mechanical properties of different materials and the normal stress on shear properties of contact zone composite samples were analyzed from a macro-meso level. The results show that the composite samples have high shear strength, and the interface of different materials has strong adhesion. The differences in mechanical properties of materials weakens the shear strength and increase the shear brittleness of the sample, while normal stress will inhibit these effect. Under low/high normal stress, the sample show two failure modes, at the meso-damage level: elastic-shearing-frictional sliding and elastic-extrusion wear. This is mainly controlled by the contact and friction state of the material after damage. The secondary failure of undulating structure under normal-shear stress is the nature of extrusion wear, which is positively correlated to the normal stress and the degree of difference in mechanical properties of different materials. The increase of the mechanical difference of the sample will enhance the shear brittleness under lower normal stress and the shear interaction under higher normal stress.

The effect of UNCL inactivation on the expression of mechanical stress related genes in cultured human PDL fibroblasts

  • Choi, Yong-Seok;Jang, Hyun-Sun;Lee, Dong-Seol;Kim, Heung-Joong;Park, Jong-Tae;Bae, Hyun-Sook;Park, Joo-Cheol
    • International Journal of Oral Biology
    • /
    • 제33권2호
    • /
    • pp.51-58
    • /
    • 2008
  • A mutation of UNCL, an inner nuclear membrane RNAbinding protein, has been found to eliminate mechanotransduction in Drosophila. UNCL is expressed in human periodontal tissue including in periodontal ligament (PDL) fibroblasts. However, it is unclear how a mechanical stimulus is translated into cellular responses in PDL fibroblasts. The aim of this study was to evaluate the effect of UNCl on mechanical stress related genes in PDL fibroblasts in response to mechanical stress. The mRNA of TGF-$\beta$, COX-2, and MMP-2 was up-regulated after UNCL inactivation in PDL fibroblasts under the compression force. Under the tensile force, inactivation of UNCL decreased the expression of Biglycan, RANKL, MMP-2, and TIMP-2 mRNAs while it increased the expression of TIMP-1. p38-MAPK was expressed in PDL fibroblasts under compression forces whereas phospho-ERK1/2, p65-NFkB, and c-fos were expressed under tension forces. The expression and phosphorylation of the mechanical stress related genes, kinases, and transcription factors were changed according to the types of stress. Furthermore, most of them were regulated by the inactivation of UNCL. This suggests that UNCL is involved in the regulation of mechanical stress related genes through the signaling pathway in PDL fibroblasts.

다중충돌 쇼트피닝에서 변형률 속도와 소재 경도가 잔류응력에 미치는 영향에 관한 연구 (Effect of Strain Rate and Material Hardness on Residual Stress in Multiple Impact Shot Peening)

  • 김태우;양조예;나두현;이영석
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1369-1375
    • /
    • 2011
  • 쇼트피닝 공정은 쇼트볼이 소재에 충돌을 일으킬 때 생기는 압축잔류응력에 의해 소재의 피로 강도를 향상 시키는데 그 목적이 있다. 본 연구는 변형률 속도 민감도 변화가 압축잔류응력에 미치는 영향을 분석하기 위해서 수행되었다. 본 연구자는 변형률 속도 민감도의 영향을 고려한 쇼트피닝 다중 충돌을 ABAQUS 6.9-1 를 사용하여 모사하였다. 사용된 소재는 AISI 4340 강종이다. 본 연구자는 변형률 속도 민감성이 높은 재료와 낮은 재료를 비교하였다. 결과적으로 변형률 속도 민감성이 증가하면 압축 잔류응력은 감소하였다. 또한 경도가 낮은 소재의 압축잔류응력이 경도가 높은 소재보다 더 크게 발생 하였다.