• 제목/요약/키워드: Mechanical stimulation

검색결과 194건 처리시간 0.032초

지연성 근육통에 대한 경피신경전기자극의 주파수별 효과 비교 (The Comparative Study on the Frequency of Transcutaneous Electrical Nerve Stimulation for Delayed-Onset Muscle Soreness)

  • 박현건;이종수
    • 한방재활의학과학회지
    • /
    • 제23권2호
    • /
    • pp.63-72
    • /
    • 2013
  • Objectives : The aim of this study was to investigate difference of the effects of transcutaneous electrical nerve stimulation(TENS) with different frequencies in participants having delayed onset muscle soreness(DOMS). Methods : We recruited 36 healthy participants, but 3 of them were dropped out. They were randomly divided into 3groups : 3 Hz TENS(n=11), 100 Hz TENS(n=11) and sham TENS(n=11). DOMS of the both triceps surae muscle induced by repetitive concentric, ecentric exercise. The result measurements were pain perception(visual analogue scale, VAS), mechanical pain threshold(MPT) by pressure algometer, electrical contraction and fatigue by surface electromyography. The measurements were on first visit, before and after treatment except first. This study was prospective, randomized, controlled, single-blinded trial. Results : In 100 Hz TENS group, VAS was significantly decreased during whole session compared with 3 Hz and control group, and after each treatment, too. In 3 Hz TENS group, VAS was significantly decreased during whole session compared with control group, and after 2nd, 3rd treatment, too. In 100 Hz TENS group, MPT increased the most among 3 groups during whole session and after 1st treatment, but there were no statistical significances. Conclusions : Both 3 Hz and 100 Hz TENS improved delayed onset muscle soreness, but 100 Hz TENS group is more effective than 3 Hz TENS group.

Identification of the Mechanical Resonances of Electrical Drives for Automatic Commissioning

  • Pacas Mario;Villwock Sebastian;Eutebach Thomas
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.198-205
    • /
    • 2005
  • The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time necessary during the commissioning of electrical drives are major cost factors, the development of self-operating identification strategies is a task worth pursuing. This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be identified. The mathematical background for an identification procedure is developed and some important implementation issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical algorithm with excellent convergence characteristics has also been used that can be implemented together with the proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure.

Clonidine이 고양이 척수후각세포의 Activity에 미치는 효과 (Effect of Clonidine on the Dorsal Horn Cell Activities in the Cat)

  • 지용철;김진혁;고상돈;신홍기;김기순
    • The Korean Journal of Physiology
    • /
    • 제22권1호
    • /
    • pp.89-100
    • /
    • 1988
  • Effect of clonidine on the dorsal horn cell responses to mechanical stimulations were studies in 3 spinalized cats and 10 cats with intact spinal cord. The type of dorsal horn cells was determined according to their response patterns to four graded mechanical stimulations (brush, pressure, pinch and squeeze) applied to the respective receptive fields. In the present study the results obtained only from the wide dynamic range (WDR) cells were included. The responses of the WDR cells to noxious mechanical stimuli were selectively suppressed following intravenous administration of clonidine into the experimental animals. The clonidine-induced changes in responses of the WDR cells to mechanical stimulation were not affected by naloxone or propranolol whereas effect of clonidine on WDR cell responses was almost completely abolished after intravenous administration of yohimbine. Also in the spinalized cats results parallel to those observed in cats with intact spinal cord were obtained. The results of present study strongly implies that analgesic action of clonidine can be mediated through excitation of ${\alpha}_{2}-adrenoceptor$ even at the spinal cord level without supraspinal mechanism.

  • PDF

가스하이드레이트 개발생산과정에서의 미고결 퇴적층의 역학적 안정성 평가를 위한 지오메카닉스모델 해석 (Geomechanical Model Analysis for the Evaluation of Mechanical Stability of Unconsolidated Sediments during Gas Hydrate Development and Production)

  • 김형목;쟈니 루트비스트
    • 터널과지하공간
    • /
    • 제24권2호
    • /
    • pp.143-154
    • /
    • 2014
  • 본 연구에서는 지오메카닉스모델을 이용한 가스하이드레이트 회수 생산 과정에서의 해리 발생 및 이에 따른 주변 퇴적층의 역학적 변형을 시뮬레이션 하였다. 지오메카닉스모델은 TOUGH+Hydrate와 FLAC3D 해석 코드를 순차적으로 반복해석하는 기법으로 감압법을 이용한 가스하이드레이트 회수 생산과정에서의 온도, 압력, 포화도 변화가 생산정 주변 퇴적층 내 유효응력, 강성 및 강도 변화에 미치는 영향을 고려할 수 있는 특징이 있다. 회수생산 방식에 따른 모델해석결과 비교를 통해, 감압법과 열자극법을 병행하는 경우 초기 생산량 증대를 가져올 수 있음을 보였다. 또한, 미고결 점토질 퇴적층에서의 회수생산 시 사암층에 비해 상대적으로 변형이 크게 발생함을 보였다.

흰쥐의 술 후 통증 모델에서 T형 칼슘 통로 차단제인 Ethosuximide와 Mibefradil의 항통각과민 효과 (Antihyperalgesic Effects of Ethosuximide and Mibefradil, T-type Voltage Activated Calcium Channel Blockers, in a Rat Model of Postoperative Pain)

  • 신혜란;차영덕;한정욱;윤정원;김부성;송장호
    • The Korean Journal of Pain
    • /
    • 제20권2호
    • /
    • pp.92-99
    • /
    • 2007
  • Background: A correlation between a T-type voltage activated calcium channel (VACC) and pain mechanism has not yet been established. The purpose of this study is to find out the effect of ethosuximide and mibefradil, representative selective T-type VACC blockers on postoperative pain using an incisional pain model of rats. Methods: After performing a plantar incision, rats were stabilized on plastic mesh for 2 hours. Then, the rats were injected with ethosuximide or mibefradil, intraperitoneally and intrathecally. The level of withdrawal threshold to the von Frey filament near the incision site was determined and the dose response curves were obtained. Results: After an intraperitoneal ethosuximide or mibefradil injection, the dose-response curve showed a dose-dependent increase of the threshold in a withdrawal reaction. After an intrathecal injection of ethosuximide, the threshold of a withdrawal reaction to mechanical stimulation increased and the increase was dose-dependent. After an intrathecal injection of mibefradil, no change occurred in either the threshold of a withdrawal reaction to mechanical stimulation or a dose-response curve. Conclusions: The T-type VACC blockers in a rat model of postoperative pain showed the antihyperalgesic effect. This effect might be due to blockade of T-type VACC, which was distributed in the peripheral nociceptors or at the supraspinal level. Further studies of the effect of T-type VACC on a pain transmission mechanism at the spinal cord level would be needed.

액체금속이 첨가된 온도 감응성 poly(N-isopropylacrylamide) 하이드로젤의 전기적 특성 변화 고찰 (Liquid Metal Enabled Thermo-Responsive Poly(N-isopropylacrylamide)Hydrogel for Reversible Electrical Switch)

  • 임태환;이소희;여상영
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.207-216
    • /
    • 2022
  • Hydrogels have gained considerable attention in various fields due to their easily transformative ability by different stimulation. In addition, metal-based conductive additives can enable the hydrogels to be conductive with dimension change. Although the development of the additives offered enhanced electrical properties to the hydrogels, correspondingly enhanced mechanical properties may limit the volume and electrical properties switching after stimulation. Here we prepared poly(N-isopropylacrylamide) (PNIPAM) thermo-responsive hydrogel that has a 32℃ of low critical solution temperature and added liquid metal particles (LMPs) as conductive additives, possessing soft and stretchable benefits. The LMPs enabled PNIPAM (PNIPAM/LMPs) hydrogels to be constricted over 32℃ with a high volume switching ratio of 15.2 when deswelled. Once the LMPs are spontaneously oxidized in hydrogel culture, the LMPs can release gallium ions into the hydrogel nature. The released gallium ions and oxidized LMPs enhanced the modulus of the PNIPAM/LMPs hydrogel, triggering high mechanical stability during repeated swelling/deswelling behavior. Lastly, highly constricted PNIPAM/LMPs hydrogel provided a 5x106 of electrical switching after deswelling, and the switching ratio was closely maintained after repeated swelling/deswelling transformation. This study opens up opportunities for hydrogel use requiring thermo-responsive and high electrical switching fields.

Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception

  • Choi, Seung-In;Hwang, Sun Wook
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.255-267
    • /
    • 2018
  • Inflammation is one of the main causes of pathologic pain. Knowledge of the molecular links between inflammatory signals and pain-mediating neuronal signals is essential for understanding the mechanisms behind pain exacerbation. Some inflammatory mediators directly modulate the excitability of pain-mediating neurons by contacting the receptor molecules expressed in those neurons. For decades, many discoveries have accumulated regarding intraneuronal signals from receptor activation through electrical depolarization for bradykinin, a major inflammatory mediator that is able to both excite and sensitize pain-mediating nociceptor neurons. Here, we focus on the final effectors of depolarization, the neuronal ion channels, whose functionalities are specifically affected by bradykinin stimulation. Particular G-protein coupled signaling cascades specialized for each specific depolarizer ion channels are summarized. Some of these ion channels not only serve as downstream effectors but also play critical roles in relaying specific pain modalities such as thermal or mechanical pain. Accordingly, specific pain phenotypes altered by bradykinin stimulation are also discussed. Some members of the effector ion channels are both activated and sensitized by bradykinin-induced neuronal signaling, while others only sensitized or inhibited, which are also introduced. The present overview of the effect of bradykinin on nociceptor neuronal excitability at the molecular level may contribute to better understanding of an important aspect of inflammatory pain and help future design of further research on the components involved and pain modulating strategies.

Attenuated Neuropathic Pain in CaV3.1 Null Mice

  • Na, Heung Sik;Choi, Soonwook;Kim, Junesun;Park, Joonoh;Shin, Hee-Sup
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.242-246
    • /
    • 2008
  • To assess the role of $\alpha_{1G}$ T-type $Ca^{2+}$ channels in neuropathic pain after L5 spinal nerve ligation, we examined behavioral pain susceptibility in mice lacking $Ca_{V}3.1$ (${\alpha}_{1G}{^{-/-}}$), the gene encoding the pore-forming units of these channels. Reduced spontaneous pain responses and an increased threshold for paw withdrawal in response to mechanical stimulation were observed in these mice. The ${{\alpha}_{1G}}^{-/-}$ mice also showed attenuated thermal hyperalgesia in response to both low-(IR30) and high-intensity (IR60) infrared stimulation. Our results reveal the importance of ${\alpha}_{1G}$ T-type $Ca^{2+}$ channels in the development of neuropathic pain, and suggest that selective modulation of ${\alpha}_{1G}$ subtype channels may provide a novel approach to the treatment of allodynia and hyperalgesia.

하반신마비 환자에서 보행기능의 복원을 위한 전기자극법의 개발 (Development of Electrical Stimulator for Restoration of Locomotion in Paraplegic Patients)

  • 박병림;김민선
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.429-438
    • /
    • 1994
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate eleclromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocnemius m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher'stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical slimulator restored partially gait function in paraplegic patients.

  • PDF

항암화학요법 유발 말초신경병증에 대한 봉독 약침 요법의 효과 및 기전에 대한 실험연구 고찰 (Review of Experimental Researches on Bee Venom Pharmacopuncture Therapy for Chemotherapy-induced Peripheral Neuropathy)

  • 권보인;우연주;김주희
    • 동의생리병리학회지
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common dose-limiting side effects of neurotoxic chemotherapeutic agents that lead to decreased quality of life and dose reduction, delay or even cessation of treatment. The purpose of this systematic review is to evaluate the effect and the underlying mechanisms of bee venom (BV) pharmacopuncture therapy for CIPN in animal models. We searched for the available experimental literature using BV for CIPN through the Pubmed databases. Ten experimental studies were finally included in this review. In the oxaliplatin or paclitaxel-induced CIPN animal model, BV significantly relieved pain caused both mechanical and cold stimulation. It was suggested that the effect of BV is mediated by the stimulation effect of spinal α1- and α2-adrenergic receptors as a potential mechanism. In the future, more experimental studies are needed.