• 제목/요약/키워드: Mechanical safety device

검색결과 197건 처리시간 0.025초

햅틱 제어에 의한 원격작업의 안전성 향상 (Safety Enhancement of Teleoperation using Haptic Control)

  • 김윤배;최기상;최기흥
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.19-25
    • /
    • 2013
  • For safe remote control, information on remote environment has to be delivered to operator realistically, and there have been numerous research efforts on this respect. Among them, haptic technology can significantly enhance safety and overall effectiveness of remote operation by delivering various kinds of information on virtual or real environment to operator. In this study, remote control based on haptic feedback is applied to control of mobile robot moving according to the command from operator avoiding collision with environmental obstacles and maintaining safe distance from them using ultrasonic sensors. Specifically, a remote feedback control structure for mobile robot is proposed. The controller is based on the inner feedback loop that directly utilizes information on distance to obstacles, and the outer feedback loop that the operator directly commands using the haptic device on which the computed reaction force based on the distance information is acting. Effectiveness of the proposed remote control scheme using double feedback loops is verified through a series of experiments on mobile robot.

이동형 전산화단층촬영장치의 기본 안전 및 필수 성능 기준을 마련하기 위한 연구 (A Study on Establishment of Basic Safety and Essential Performance Criteria of Mobile Computed Tomography)

  • 김은혜;박혜민;김정민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권3호
    • /
    • pp.261-267
    • /
    • 2021
  • As the number of Coronavirus Disease-19 (COVID-19) patients increases in a global pandemic situation, the usefulness of mobile computed tomography (CT) is gaining attention. Currently, mobile CT follows the basic safety and essential performance evaluation criteria of whole-body or limited-view X-ray CT in order to obtain device approval and evaluation in the Republic of Korea. Unlike stationary CT, mobile CT is not operated in shielded areas but rather areas such as intensive care units, operating rooms, or isolation rooms. Therefore, it requires a different basic safety and essential performance evaluation standard than stationary CT. In this study, four derived basic safety evaluation criteria related to electrical, mechanical, and radiation safety were included (dose indication test, protection against stray radiation, safety measures against excessive X-rays, half-value layer measurement); and seven essential performance evaluation criteria were included (tube voltage accuracy, mAs accuracy, radiation dose reproducibility, CT number of water, noise, uniformity, and spatial resolution); total eleven basic safety and essential performance evaluation criteria were selected. This study aims to establish appropriate basic safety and essential performance evaluation criteria for simultaneously obtaining images with diagnostic value and reducing the exposure of nearby patients, medical staff, and radiologic technologists during the use of mobile CT.

팔꿈치 경직 환자의 회복 운동을 위한 재활 로봇 시스템 개발 (Development of Rehabilitation Robot System for Patients with Elbow Spasticity)

  • 이정완;이재경
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.75-80
    • /
    • 2008
  • This paper describes the mechanical and control design of a robotic device for providing therapeutic assistance to arm movement following stroke. This is a new robot for arm therapy applicable to the training of activities of daily living in homes and clinics. This instrument has one degrees of freedom, and is equipped with position and force sensors. Repetitive movement can improve movement performance in patients with neurological or orthopaedic lesions. The application of robotics can serve to assist, enhance, evaluate, and document neurological and orthopaedic rehabilitation of movements. The new robot, the mechanical structure, the control circuit, the sensors and actuators and some safety aspects.

  • PDF

천정크레인의 무진동/위치 제어기 개발에 관한 연구 (A Study on the Anti-Swing and Position Controller for the Overhead Cranes)

  • 윤지섭;강이석
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1391-1401
    • /
    • 1995
  • This paper addresses design procedure and testing results of a closed-loop motion control of the cranes. When the object is stopped at the desired position, swinging occurs, and such swinging deteriorates the safety and efficiency of the operation of the crane. Therefore, in this paper, the cascade anti-swing and trolley position feedback controller are designed. Anti-swing controller rapidly eliminates swinging of object and position feedback controller reduces the trolley position error. The performance of this controller is investigated through the computer simulation and experiment. From the results of a series of computer simulations and experiments it can be concluded that proposed controller effectively reduces swinging of the object and trolley position error, which shows this controller can be used as an effective tool for the precise control of overhead cranes.

수직축 풍력발전기의 해석에 관하여 (On the Analysis of Vertical-axis Wind Rotor)

  • 김광호;김정오
    • 대한기계학회논문집
    • /
    • 제3권2호
    • /
    • pp.60-67
    • /
    • 1979
  • Aerodynamic forces acting on a curved blade are computed theoretically taking into account the variation of wind speed over the blade to investigate the performance of a vertical axis wind rotor. It is shown that the rotor does not self start at the rated wind speed without a supplementary starting device and that most of the power output is contributed by the central portion of the rotor, and the use of spoilers for limiting the maximum rotational speed is needed for safety. It is also shown that provision of skew angle to the blade does not improve the starting characterstics and only reduces the maximum power output. The effects of geometric variables such as skew angle, blade solidity and ratio of the rotor height to diameter are also discussed.

ABS 장착 자동차의 제어방식에 따른 제동특성에 관한 연구 (A Study on the Braking Characteristics of Control Methods for ABS mounted Vehicle)

  • 최종환;김승수;양순용;박성태;이진걸
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.203-211
    • /
    • 2002
  • ABS (Anti-lock Braking System) is a safety device for preventing wheel locking in a sudden braking. It consists of hydraulic modulator, ECU(Electronic Control Unit) and angular velocity sensors. Its control methods are classified into three types; deceleration control, slip ratio control and deceleration/acceleration control. In this paper, ABS mounted vehicle is mathematically modeled and the proposed model is verified by actual cars experiments, and the braking characteristics of the control methods with pulse width modulation are compared and analyzed through computer simulations.

무진동 크레인의 구현을 위한 여러가지 제어방식의 비교 연구 (Comparison Study of Various Control Schemes for the Anti-Swing Crane)

  • 윤지섭
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2399-2411
    • /
    • 1995
  • Crane operation for transporting heavy loads inherently causes swinging motion at the loads due to crane's acceleration or deceleration. This motion not only lowers the handling safety but also slows down the handling process. To complement such a problem, Korea Atomic Energy Research Institute(KAERI) has designed several anti-swing controllers using open loop and closed loop approaches. They are namely a pre-programmed feedback controller and a fuzzy controller. These controllers are implemented on a 1-ton crane system at KAERI and their control performances are compared. Test operations show that the new controllers are superior to that of conventional cranes in terms of robustness to the disturbances and adaptation capability to the change of rope length.

Development of Auxiliary Wheel Unit Mechanism for Overcoming Obstacles

  • Han, Jae-Oh;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.30-38
    • /
    • 2019
  • Recently, the spread of personal mobility has been rapidly increasing due to the development of environmentally friendly alternative transportation means. In addition, the level of battery technology is also rapidly developing, accelerating the popularization of personal mobility. Such personal mobility has convenience of location transfer, amusement, and high portability compared to other transportation devices. Most personal mobility, however, is made up of small wheels, which cannot overcome obstacles such as rugged roads or obstacles on the road. In this paper, to solve these problems, we tried to devise a device that can easily overcome obstacles by combining wheels with small moving means. The wheel size can be mounted on the front wheel of the small moving means in a protruding manner so that obstacles can be encountered before the front wheels and the safety and ride comfort of the running can be improved.

분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석 (Numerical Analysis of Flow Distribution Inside a Fuel Assembly with Split-Type Mixing Vanes)

  • 이공희;정애주
    • 대한기계학회논문집B
    • /
    • 제40권5호
    • /
    • pp.329-337
    • /
    • 2016
  • 연료집합체의 지지격자에 설치된 혼합날개는 난류 강화 기구로서 부수로 내부에서 선회류 또는 연료봉 간극사이에서 횡류를 발생시켜 대류열전달을 증진시키는 역할을 한다. 따라서 혼합날개의 기하학적인 형상 및 배열 형태는 혼합날개의 성능을 결정하는 중요한 인자이다. 본 연구에서는 OECD/NEA의 벤치마크 계산에서 활용된 분할 형태의 혼합날개가 장착된 $5{\times}5$ 연료집합체 내부에서의 유동분포 특성을 파악하기 위해 상용 전산유체역학 소프트웨어인 ANSYS CFX R.14를 사용하여 계산을 수행하였고, 계산결과를 MATiS-H 시험장치의 측정값과 비교하였다. 또한 분할 형태의 혼합날개 형상이 연료집합체 내부유동 형태에 미치는 영향에 대해 설명하였다.

다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가 (Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics)

  • 오재원;민천홍;이창호;홍섭;김형우;여태경;배대성
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.