• Title/Summary/Keyword: Mechanical parts

Search Result 3,141, Processing Time 0.03 seconds

Analysis of Mechanical Properties of Colored EPDM Based on Additive Mixing Ratio Using Mixture Design of Experimental Method (혼합물 실험계획법을 이용한 유색 EPDM의 첨가제 배합비에 따른 기계적 특성 분석)

  • Park, Yoon-A;Jeon, Euy-Sik;Kim, Young-Shin;Lee, Hyun-Seung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.79-86
    • /
    • 2022
  • With the recent increase in the demand for electric vehicles, it is necessary to identify the high current safety of automobile parts. Among the automobile parts, the EPDM parts required colored parts from the existing black; therefore, it was necessary to change the basic filler from carbon black to silica. The rubber used in automobile parts is flexible and exhibits basic characteristics of high strength and elongation. However, as the filler is changed to silica, its physical properties, such as tensile strength and elongation, are lower than those of the existing carbon black base. Therefore, it is necessary to evaluate the mechanical properties with the addition of the EPDM compound using silica as a base without degrading the physical properties of EPDM. In this study, an experiment based on the additive content was performed using the mixture experimental planning method to analyze the mechanical properties according to the additive type and mixing ratio of silica-based EPDM. The mixing ratio of the four additives was set using a simplex lattice design, and the tensile strength, elongation, modulus 300%, and permanent compression reduction rate were analyzed for mechanical characteristics, and rheometer experiments were performed for vulcanization characteristics. Through statistical analysis of the measured data, the main effects and interactions of the EPDM-blended rubber additives were analyzed. These results can be used to derive a mixing ratio of additives that satisfies the required characteristics of the EPDM compound.

Nondestructive Evaluation Technology and Reliability of Products

  • Lee, Joon-Hyun;Lee, Seung-Suck
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.235-238
    • /
    • 2001
  • It is well known that the reliability of materials of mechanical products is becoming more and more important not only for assurance of quality, but for international competition of products. In order to assure the reliability of materials or mechanical products nondestructive evaluation (NDE) techniques are playing more important roles. The existence of Internal defects in materials or mechanical parts is served as crack initiation site during the various loading condition. Historically, nondestructive evaluation (NDE) technique has been used almost exclusively for detecting microscopic discontinuities In materials or mechanical parts after they have been in service to expand the role of the NDE to include all aspects of materials production and application. Research efforts are being directed at developing and perfecting NDE techniques capable of monitoring (1) materials production processes (2) material integrity following transport, storage and fabrication and (3) the amount and rate of degradation during service. In addition, efforts are underway to develop technique capable of quantitative discontinuity sizing, permitting determination of response using fracture mechanics analysis, as well as techniques for quantitative materials characterization to replace the qualitative techniques used in the past. In this paper, the important role of NDE technology for reliability assurance of materials/mechanical parts is introduced.

  • PDF

Fabrication and Characterization of Micro parts by Mechanical Micro Machining: Precision and Cost Estimation (기계식 마이크로 머시닝을 이용한 마이크로 형상의 특성과 비용 평가)

  • Kang, Hyuk-Jin;Choi, Woon-Yong;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.47-56
    • /
    • 2007
  • Recently, demands on mechanical micro machining technology have been increased in manufacturing of micro-scale precision shapes and parts. The main purpose of this research is to verify the accuracy and cost efficiency of the mechanical micro machining. In order to measure the precision and feasibility of mechanical micro machining, various micro features were machined. Aluminum molds were machined by a 3-axis micro stage in order to fabricate microchips with $200{\mu}m$ wide channel for capillary electrophoresis, then the same geometry of microchip was made by injection molding. To evaluate the cost efficiency of various micro manufacturing processes, cost estimation for mechanical micro machining was conducted, and actual costs of microchips fabricated by mechanical micro machining, injection molding, and MEMS (Micro electro mechanical system) were compared.

Evaluation of Multi-axis Robotic Manufactured Thermoplastic Composite Structure Using Stamp-forming Process (다관절 로봇 암 기반 고속 열 성형 공정을 활용한 열가소성 복합재 부품 평가)

  • Ho-Young Shin;Ji-Sub Noh;Gyu-Beom Park;Chang-Min Seok;Jin-Hwe Kweon;Byeong-Su Kwak;Young-Woo Nam
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.321-328
    • /
    • 2023
  • This study developed the in-situ stamp-forming process using the multi-axis robotic arm to fabricate thermal composite parts. Optimal fabrication parameters with the multi-axis robotic arm were determined using finite element analysis and these parameters were further refined through the practical manufacturing process. A comparison between the manufactured parts and finite element analysis results was conducted regarding thickness uniformity and wrinkle distribution to confirm the validity of the finite element analysis. Additionally, to evaluate the formability of the manufactured composite parts, measurements of crystallinity and porosity were taken. Consequently, this study establishes the feasibility of the In-situ stamp-forming consolidation using a robotic arm and verifies the potential for producing composite parts through this process.

Modal Analysis and Velocity Control of Bowl Parts Feeder Activated by Piezoactuators (압전작동기로 구동 되는 보울 파트 피더의 모드 해석과 이송 속도 제어)

  • Lee, Dong-Ho;Choe, Seung-Bok;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.839-847
    • /
    • 2000
  • This paper presents modal analysis and mean conveying velocity (M.C.V.) control of bowl parts feeder activated by piezoactuators. Bowl parts feeders are being widely used in many industry fields for automatic assembly line. In general, the electromagnet has been and being used as exciting actuator of these vibratory bowl feeders. However, because of complexity of its mechanism and limited capability of the electromagnet actuator, there exist various impending problems such as severe noise, nonlinear motion of parts, passive characteristics and so forth. As one of solutions for these problems, piezoelectric actuators as new actuating technology have been proposed recently to excite the bowl parts feeder. In this paper, modal analysis of the proposed model has been performed to examine the modal characteristics of the model by using commercial FEM software and modeling with respects to MCV is constructed. Finally, MCV of the parts is to be controlled to track the desired one with PID controller.

Mechanical Properties for Hollow Shape Part of Metal Matrix Composites by Thixoforging (Thixoforging에 의한 중공형 금속복합재료 부품의 기계적 특성)

  • Heo J. C.;Lee S. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.281-284
    • /
    • 2001
  • MMC was developed that had distinguished mechanical properties and light weighted. MMC has excellent mechanical properties in many ways in automotive industrial, and get into the spotlight as a light materials substituted for iron and steel. But the know-how about MMC research lack, MMC is expensive and difficult to apply the sound parts. Especially it is difficult to produce the hollow type parts composed with MMC. Therefore, hollow type parts of metal matrix composites by thixoforging process which as co-existing solidus-liquidus phase, it is very important to obtain forming condition. In this study, used materials were A357, A380, A380 $10\%$vol, and $20\%$vol SiCp, and the size of particulates were $14{\mu}m$ and $5.5{\mu}m$

  • PDF

Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts (자동차 부품용 과공정 알루미늄 합금의 기계적 특성)

  • Bae, Chul-Hong;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

Study on the Development and Characteristics of Automobile Plastic Clutch Master Cylinder (자동차용 플라스틱 클러치 마스터 실린더의 개발동향과 특성에 관한연구)

  • Lee, Jong-Hyung;Lee, Chun-Kon;Kwon, Yung-Shin;So, Yoon-Sub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.235-240
    • /
    • 2007
  • Special quality of automobile CMC(clutch master cylinder) and analyzed aluminum, plastic material comparison. Efficiency of plastic master cylinder can modularize higher, light weight anger of parts, several piece parts by single parts, prove NVH(Noise, Vibration, Harshness) than aluminum master cylinder as analysis result. Also, structure is easy simplicity, exchange, maintenance costs can be reduced and decrease environmental pollution because recycling is superior.

  • PDF

DEVELOPMENT OF AN INTELLIGENT ULTRASONIC EVALUATION SYSTEM WITH A MULTI-AXIS PORTABLE SCANNER

  • Sung-Jin Song;Hak-Joon Kim;Won-Suk Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.167-176
    • /
    • 1996
  • Flaw classification and sizing are very essential issues in quantitative ultrasonic nondestructive evaluation of various materials and structures including weldments. For performing of these tasks in an automated fashion, we are developing an intelligent ultrasonic evaluation system with a multi-axis portable scanner which can do consistent and efficient acquisition and processing of ultrasonic flaw signals. Here we present our efforts to develop of this intelligent system including design of the portable scanner, acquisition and processing of ultrasonic flaw signals, display of pseudo 3-D image of flaws, and classification and sizing of flaws in weldments.

  • PDF

A study on the squeeze casting of Al-7.0Si-0.4Mg alloy for fuel system parts

  • Kim Soon-Ho;Kim Seong-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.56-59
    • /
    • 2005
  • Aluminum alloy casting is gaining increased acceptance in automotive and electronic industries and especially, squeeze casting is the most efficient method of mass manufacturing of such parts. In this study, the microstructures and mechanical properties of Al-7.0Si-0.4Mg(AC4C) alloy fabricated by squeeze casting process for development of fuel system parts (fuel rail) are investigated. The microstructure of squeeze cast specimen was composed of eutectic structure aluminum solid solution and $Mg_2Si$ precipitates. The tensile strength of as-solid solution treatment Al-7.0Si-0.4Mg alloy was 298.5MPa. It was found that Al-7.0Si-0.4Mg alloy had good corrosion resistance in electrochemical polarization test.