• 제목/요약/키워드: Mechanical parameter identification

검색결과 114건 처리시간 0.023초

시간 영역에서의 Extended Kalman Filter 알고리즘을 이용한 동적 기계 시스템의 파라미터 추정에 관한 연구 (A study on the Parameter Identification for a Mechanical Dynamic System Using a Time-Domain Extened Kalman Filter Algorithm)

  • 이용복;김창호;사종성;김광식
    • 소음진동
    • /
    • 제2권2호
    • /
    • pp.135-140
    • /
    • 1992
  • The Extended Kalman Filter(EKF) algorithm estimates variables and unknown parameters simultaneously and is applied to parameter identification of linear and nonlinear mechanical systems. In this paper, an EKF algorithm was developed through a computer simulation and then applied to a sealing test system as a practical example. Comparing with the frequency domain analysis, it was proved to be a useful alternative for the parameter identification.

  • PDF

Identifiability of Ludwik's law parameters depending on the sample geometry via inverse identification procedure

  • Zaplatic, Andrija;Tomicevic, Zvonimir;Cakmak, Damjan;Hild, Francois
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.133-149
    • /
    • 2022
  • The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.

On-Line Aircraft Parameter Identification Using Fourier Transform Regression With an Application to NASA F/A-18 Harv Flight Data

  • Song, Yongkyu;Song, Byungheum;Seanor, Brad;Napolitano, Marcello R.
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.327-337
    • /
    • 2002
  • This paper applies a recently developed on-line parameter identification (PID) technique to sets of real flight data and compares the results with those of a state-of-the-art off-line PID technique. The on-line PID technique takes Linear Regression from Fourier Transformed equations and the off-line PID is based on the traditional Maximum Likelihood method. Sets of flight data from the NASA F/A-18 High Alpha research Vehicle (HARV) circraft, which has been recorded from specifically designed maneuvers and used for our line parameter estimation, are used for this study. The emphasis is given on the accuracy and on-line measure of reliability of the estimates. The comparison is performed for both longitudinal and lateral-directional dynamics for maneuvers at angles of attack ranging u=20°through $\alpha$=40°. Results of the two estimation processes are also compared with baseline wind tunnel estimates whenever possible.

A Mechanical Sensorless Vector-Controlled Induction Motor System with Parameter Identification by the Aid of Image Processor

  • Tsuji Mineo;Chen Shuo;Motoo Tatsunori;Kawabe Yuki;Hamasaki Shin-ichi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.350-357
    • /
    • 2005
  • This paper presents a mechanical sensorless vector-controlled system with parameter identification by the aid of image processor. Based on the flux observer and the model reference adaptive system method, the proposed sensorless system includes rotor speed estimation and stator resistance identification using flux errors. Since the mathematical model of this system is constructed in a synchronously rotating reference frame, a linear model is easily derived for analyzing the system stability, including motor operating state and parameter variations. Because it is difficult to identify rotor resistance simultaneously while estimating rotor speed, a low-accuracy image processor is used to measure the mechanical axis position for calculating the rotor speed at a steady-state operation. The rotor resistance is identified by the error between the estimated speed using the estimated flux and the calculated speed using the image processor. Finally, the validity of this proposed system has been proven through experimentation.

유한요소모델을 이용한 비선형 시스템의 매개변수 규명 (Nonlinear System Parameter Identification Using Finite Element Model)

  • 김원진;이부윤
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1593-1600
    • /
    • 2000
  • A method based on frequency domain approaches is presented for the nonlinear parameters identification of structure having nonlinear joints. The finite element model of linear substructure is us ed to calculating its frequency response functions needed in parameter identification process. This method is easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of finite element model. Since this method is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude but also selecting excitation frequencies. The validity of this method is tested numerically and experimentally with a cantilever beam having the nonlinear element. It was verified through examples that the method is useful to identify the nonlinear parameters of a structure having arbitary nonlinear boundaries.

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm

  • Yoon, Jae-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2262-2270
    • /
    • 2015
  • Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.

전자기력 측정과 방향성주파수 응답함수를 이용한 능동 자기베어링 시스템의 운전중 모드시험 및 매개변수 규명 (In-situ modal testing and parameter identification of active magnetic bearing system by magnetic force measurement and the use of directional frequency response functions)

  • 하영호;이종원
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1156-1165
    • /
    • 1997
  • Complex modal testing is employed for the in-situ parameter identification of a four-axis active magnetic bearing system while the system is in operation. In the test, magnetic bearings are used as exciters as well as actuators for feedback control. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters. It is also shown that the position and current stiffnesses can be accurately estimated using the relations between the measured forces, displacements, and currents.

시스템인식을 이용한 공구파손검출 알고리듬에 관한 연구 (A Study on the Tool Fracture Detection Algorithm Using System Identification)

  • 사승윤;유은이;유봉환
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.988-994
    • /
    • 1997
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc. In this study, digital image of time series sequence was acquired by taking advantage of optical technique. Mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR(auto regressive) model was selected for system model and fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, it was found that there was a system stability.

Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter;Loffeld, Otmar
    • Smart Structures and Systems
    • /
    • 제21권6호
    • /
    • pp.741-749
    • /
    • 2018
  • Structural health monitoring (SHM) systems are necessary to achieve smart predictive maintenance and repair planning as well as they lead to a safe operation of mechanical structures. In the context of vibration-based SHM the measured structural responses are employed to draw conclusions about the structural integrity. This usually leads to a mathematically illposed inverse problem which needs regularization. The restriction of the solution set of this inverse problem by using prior information about the damage properties is advisable to obtain meaningful solutions. Compared to the undamaged state typically only a few local stiffness changes occur while the other areas remain unchanged. This change can be described by a sparse damage parameter vector. Such a sparse vector can be identified by employing $L_1$-regularization techniques. This paper presents a novel framework for damage parameter identification by combining sparse solution techniques with an Extended Kalman Filter. In order to ensure sparsity of the damage parameter vector the measurement equation is expanded by an additional nonlinear $L_1$-minimizing observation. This fictive measurement equation accomplishes stability of the Extended Kalman Filter and leads to a sparse estimation. For verification, a proof-of-concept example on a quadratic aluminum plate is presented.

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping;Li, Zongjing
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.397-407
    • /
    • 2017
  • With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).