• Title/Summary/Keyword: Mechanical load test

Search Result 1,543, Processing Time 0.029 seconds

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon;Kim, Tae Woo;Lee, Kee Sung;Kim, Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.452-460
    • /
    • 2018
  • This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

Analysis of Engine Operation Condition by Using Coastdown Test under Gear Engaged Condition (기어 물림 상태의 타행 주행 저항을 이용한 엔진 운전 조건의 분석)

  • Shim, Beom-Joo;Park, Kyoung-Suk;Park, Jun-Su;Min, Byeong-Du
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.61-66
    • /
    • 2012
  • Conventional method to transform vehicle driving condition to engine operation mode is to use vehicle road load under neutral gear and mechanical efficiency of drivetrain. But this method requires additional measurement of efficiency of drivetrain on a test rig. And this measurement is normally done at fixed speed and thus estimated accuracy of engine operation mode is not considered to be high enough. This study suggests new method to calculate engine operation mode for prescribed driving mode such as NEDC using vehicle coastdown test under gear engaged condition without measurement of mechanical efficiency of drivetrain. Coastdown test was done under neutral and gear engaged condition for comparison and also trial to extract mechanical loss of drivetrain was carried out. Calculated engine torque by conventional and newly suggested method was compared with actually measured torque of a vehicle on a chassis dynamometer during NEDC. Newly suggested method showed slightly higher accuracy of accumulated brake work during NEDC.

Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient (응력 및 온도 변화시 무기력계수를 이용한 크리프-피로 수명설계)

  • Park, Jung-Eun;Yang, Sung-Mo;Han, Jae-Hee;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipments. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously.

Creep-Fatigue Crack Growth Behavior of a Structure with Crack Like Defects at the Welds

  • Lee, Hyeong-Yeon;Kim, Seok-Hoon;Lee, Jae-Han;Kim, Byung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2136-2146
    • /
    • 2006
  • A study on a creep-fatigue crack growth behavior has been carried out for a cylindrical structure with weldments by using a structural test and an evaluation according to the assessment procedures. The creep-fatigue crack growth behavior following the creep-fatigue crack initiation has been assessed by using the French A16 procedure and the conservatism for the present structural test has been examined. The structural specimen is a welded cylindrical shell made of 316 L stainless steel (SS) for one half of the cylinder and 304 SS for the other half. In the creep-fatigue test, the hold time under a tensile load which produces the primary nominal stress of 45 MPa was one hour at $600^{\circ}C$ and creep-fatigue loads of 600 cycles were applied. The evaluation results for the creep-fatigue crack propagation were compared with those of the observed images from the structural test. The assessment results for the creep-fatigue crack behavior according to the French Al6 procedure showed that the Al6 is overly conservative for the creep-fatigue crack propagation in the present case with a short hold time of one hour.

Wind Load Analysis owing to the Computation Fluid Dynamics and Wind Tunnel Test of a Container Crane (컨테이너 크레인의 전산유동해석과 풍동실험에 의한 풍하중 분석)

  • Lee, Su-Hong;Han, Dong-Seop;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.215-220
    • /
    • 2009
  • Container cranes are vulnerable structure to difficult weather conditions bemuse there is no shielding facility to protect them from strong wind. This study was carried out to analyze the effect of wind load on the structure of a container crane according to the change of the boom shape using wind tunnel test and computation fluid dynamics. And we provide a container crane designer with data which am be used in a wind resistance design of a container crane assuming that a wind load 75m/s wind velocity is applied in a container crane. In this study, we applied mean wind load conformed to 'Design Criteria of Wind Load' in 'Load Criteria of Building Structures' and an external fluid field was divided as interval of 10 degrees to analyze the effect according to a wind direction. In this conditions, we carried out the wind tunnel test and the computation fluid dynamic analysis and than we analyzed the wind load which was needed to design the container crane.

Analysis on the Impact of Composite by Using FEM (유한요소법을 이용한 복합재료의 충격에 관한 해석)

  • Kim, Sung-Soo;Kim, Young-Chun;Hong, Soon-Jik;Kook, Jeong-Han;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.542-547
    • /
    • 2013
  • In this study, mechanical property on the composite material of aluminum foam core is investigated by simulation analysis. Impact energies such as 50J, 70J, and 100J are applied to the specimen model. The maximum load occurs at 3.4ms for 50J, 3.2ms for 70J, and 3.2ms for 100J respectively. The striker penetrates the upper face sheet, causing the core to be damaged at 50J test but the lower face sheet remains intact with no damage. It results in occurring with the energy of 52 J. At 70J test, it penetrates the upper face sheet and penetrated the core. And the striker causes the lower face sheet with damage. And it results in occurring with the energy of 65 J. Finally at 100J test, the striker penetrated both the upper face sheet and core and even the lower face sheet. The load becomes maximum at the time when striker penetrates through the upper plate and it rapidly reduced. And then the load increases rapidly when reaching the lower face sheet. And it decreases again. It results in occurring with the energy of 95 J.

Ride Performance Evaluation of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 승차감 성능 평가 연구)

  • Lee, Ji-Sun;Choi, Gyoo-Jae;Lee, Kwang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • Semi-active cabin air suspension system improves driver's comfort by controlling the damping characteristics in accordance with driving situation. For the driver's comfort evaluation, test procedure has the two methodologies which are filed test and lab test. A field test method has a drawback. It requires a lot of time and money on repetitive test, due to the sensitivity of field test. On the other hand, the test with six axes simulation table at laboratory can obtain the repeatability of test, better than the field test method. In this paper, the procedures of ride performance test and control logic tuning with the table are presented. Drive files of the table can be represented with the almost same input condition as field test data. According to the result from the comparative test using six axes simulation table between passive and semi-active system by making ECU logic tuning, the RMS acceleration of semi-active cabin air suspension system was reduced by 29.6% compared with passive system.

Sealing Integrity of polymeric ZnO Surge Arresters (고분자 피뢰기의 기밀특성에 관한 연구)

  • Liang, He-Jin;Han, Se-Won;Cho, Han-Goo;Kim, In-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.258-261
    • /
    • 1997
  • The sealing integrity is related to the safe operation of arrester the prime failure reason of porcelain housed arresters is moisture ingress. To be a meaningful tests a polymer arrester sealing test must be a realistic acceleration of field service. We think the test should be an accelerating course of actual temperatures, the enduring property to mechanical load and temperatures should be considered together. A union test method consisting of the thermal mechanical test and thermal cycling test is proposed to test the sealing integrity of polymeric arresters, which uses dielectric loss, leakage current 1mA DC voltage and partial discharge as the diagnostic techniques, and the test results were presented. The comparison states that the TMTCUT method is suitable fur the test of sealing integrity of polymeric arresters. .

  • PDF

Structural Safety Evaluation of An Autoclave Cured Train Carbody with Length of 23m (오토클레이브 성형된 길이 23m 복합재 철도차량 차체의 구조적 특성평가)

  • Kim, Jung-Seok;Lee, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1551-1559
    • /
    • 2005
  • This paper explains manufacturing process and experimental studies on a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate structural behavior and safety of the composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. These tests were performed under Japanese Industrial Standard (JIS) 17105 standard. From the tests, maximum deflection was 12.3mm and equivalent bending stiffness of the carbody was 0.81$\times$10$^{14}$ kgf$\cdot$mm$^{2}$ Maximum stress of the composite body was lower than 12.2$\%$ of strength of the carbon/epoxy. Therefore, the composite body satisfied the Japanese Industrial Standard.

A Study of a Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode

  • Lee, Seong-Beom;Park, Jong-Keun;Min, Je-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.16-21
    • /
    • 2004
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. The relation between the load applied to the shaft or sleeve and the relative displacement of elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation for elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem fur the bushing response leads to the load-displacement relation, which requires complex calculations. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data for the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation for radial response of the bushing. After the load relaxation function for the bushing was obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of the modified Lianis model and those of the proposed model. It was shown that the proposed Pipkin-Rogers model was in very good agreement with the modified Lianis model.